A Characterization of NP Within Interval-Valued Computing

  • Benedek Nagy
  • Sándor VályiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9288)


In this paper, a syntactic subclass of polynomial size interval-valued computations is given that characterizes NP, that is, exactly languages with non-deterministically polynomial time complexity can be decided by interval-valued computations of this subclass. This subclass refrains from using product and shift operators aside from a starting section of the computation.


Unconventional computing Interval-valued computing Complexity NP coNP Deterministic computing 



Reviewers’ remarks and advices are gratefully acknowledged.


  1. 1.
    Calude, C.S., Păun, G.: Computing with Cells and Atoms: An Introduction to Quantum, DNA and Membrane Computing. Taylor & Francis/Hemisphere, London, Bristol (2001)Google Scholar
  2. 2.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)Google Scholar
  3. 3.
    McKenzie, P., Wagner, K.W.: The complexity of membership problems for circuits over sets of natural numbers. Comput. complex. 16(3), 211–244 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Nagy, B.: A general fuzzy logic using intervals, In: HUCI 2005: 6th International Symposium of Hungarian Researchers on Computational Intelligence, Budapest, Hungary, pp. 613–624 (2005)Google Scholar
  5. 5.
    Nagy, B.: An interval-valued computing device. In: CiE 2005, Computability in Europe: New Computational Paradigms, Amsterdam, Netherlands, pp. 166–177 (2005)Google Scholar
  6. 6.
    Nagy, B.: Új Számítási Paradigmák: Bevezetés az Intervallum-értékű, a DNS-, a Membrán- és a Kvantumszámítógépek elméletébe (New Computing Paradigms: Introduction to Interval-Valued, DNA, Membrane and Quantum Computing, in Hungarian). Typotex, Budapest (2014)Google Scholar
  7. 7.
    Nagy, B., Major, S.R.: Connection between interval-valued computing and cellular automata. In: CINTI 2013: 14th IEEE International Symposium on Computational Intelligence and Informatics, Budapest, Hungary, pp. 225–230 (2013)Google Scholar
  8. 8.
    Nagy, B., Vályi, S.: Solving a PSPACE-complete problem by a linear interval-valued computation. In: CiE 2006, Computability in Europe: Logical Approaches to Computational Barriers. University of Wales, Swansea, UK, pp. 216–225 (2006)Google Scholar
  9. 9.
    Nagy, B., Vályi, S.: Visual reasoning by generalized interval-values and interval temporal logic. In: CEUR Workshop Proceedings, vol. 274, pp. 13–26 (2007)Google Scholar
  10. 10.
    Nagy, B., Vályi, S.: Interval-valued computations and their connection with PSPACE. Theor. Comput. Sci. 394, 208–222 (2008)CrossRefzbMATHGoogle Scholar
  11. 11.
    Nagy, B., Vályi, S.: Prime factorization by interval-valued computing. Publicationes Mathematicae Debrecen 79, 539–551 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Nagy, B., Vályi, S.: Computing discrete logarithm by interval-valued paradigm. Electron. Proc. Theor. Comput. Sci. 143, 76–86 (2014)CrossRefGoogle Scholar
  13. 13.
    Papadimitriou, C.: Computational Complexity. Addison Wesley, Reading (1994)Google Scholar
  14. 14.
    Păun, Gh., Rozenberg, G., Salomaa, A.: DNA Computing: New computing paradigms. Springer, Berlin (1998)Google Scholar
  15. 15.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): Handbook of Membrane Computing. Oxford University Press, Oxford (2010)Google Scholar
  16. 16.
    Rozenberg, G., Bäck, T., Kok, J.N. (eds.): Handbook of Natural Computing. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  17. 17.
    Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston (2012)Google Scholar
  18. 18.
    Woods, D., Naughton, T.J.: Optical computing. Appl. Math. Comput. 215, 1417–1430 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Arts and SciencesEastern Mediterranean UniversityMersin-10Turkey
  2. 2.Department of Computer Science, Faculty of InformaticsUniversity of DebrecenDebrecenHungary
  3. 3.Institute of Mathematics and InformaticsCollege of NyíregyházaNyíregyházaHungary

Personalised recommendations