Skip to main content

Evolutionary Graph Theory

  • Chapter
Book cover Diffusion in Social Networks

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

Abstract

Evolutionary graph theory (EGT), studies the ability of a mutant gene to overtake a finite structured population. In this chapter, we describe the original framework for EGT and the major work that has followed it. Here, we will study the calculation of the “fixation probability”—the probability of a mutant taking over a population and focuses on game-theoretic applications. We look at varying topics such as alternate evolutionary dynamics, time to fixation, special topological cases, and game theoretic results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is the exception of an alternating state where every edge connects a mutant-resident pair. This state cannot be reached if it exists.

  2. 2.

    We use the shorter BD and DB notation for the update rules with birth bias BD-B and DB-B. See Table 6.2.

  3. 3.

    The authors of [26] also note that mathematically, “IM updating can be obtained from DB updating by adding loops to every vertex”.

References

  1. Antal, T., Redner, S., Sood, V., 2006. Evolutionary dynamics on degree-heterogeneous graphs. Physical Review Letters 96 (18), 188104. http://link.aps.org/abstract/PRL/v96/e188104

  2. Barbosa, V. C., Donangelo, R., Souza, S. R., 2009. Network growth for enhanced natural selection. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 80 (2), 026115. http://link.aps.org/abstract/PRE/v80/e026115

  3. Barbosa, V. C., Donangelo, R., Souza, S. R., Oct 2010. Early appraisal of the fixation probability in directed networks. Phys. Rev. E 82 (4), 046114.

    Google Scholar 

  4. P. Shakarian, P. Roos, A. Johnson. A Review of Evolutionary Graph Theory with Applications to Game Theory. BioSystems 107(2), 2012.

    Google Scholar 

  5. P. Shakarian, P. Roos, G. Moores. A Novel Analytical Method for Evolutionary Graph Theory Problems. BioSystems. 111(2), 2015.

    Google Scholar 

  6. Broom, M., Hadjichrysanthou, C., Rychtar, J., 2010. Evolutionary games on graphs and the speed of the evolutionary process. Proceedings of the Royal Society A 466, 1327–1346.

    Article  MATH  MathSciNet  Google Scholar 

  7. Broom, M., Hadjichrysanthou, C., Rychtar, J., Stadler, B. T., Apr. 2010. Two results on evolutionary processes on general non-directed graphs. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466 (2121), 2795–2798. http://rspa.royalsocietypublishing.org

  8. Broom, M., Rychtar, J., May 2008. An analysis of the fixation probability of a mutant on special classes of non-directed graphs. Proceedings of the Royal Society A 464, 2609–2627.

    Google Scholar 

  9. Broom, M., Rychtar, J., Stadler, B., 2011. Evolutionary dynamics on graphs - the effect of graph structure and initial placement on mutant spread. Journal of Statistical Theory and Practice 5 (3), 369–381.

    Article  MathSciNet  Google Scholar 

  10. Broom, M., Rychtar, J., Stadler, B., 2009. Evolutionary dynamics on small-order graphs. Journal of Interdisciplinary Mathematics 12 (2), 129–140.

    Article  MATH  Google Scholar 

  11. Fu, F., Wang, L., Nowak, M. A., Hauert, C., Apr. 2009. Evolutionary dynamics on graphs: Efficient method for weak selection. Physical Review E 79 (4).

    Google Scholar 

  12. Garey, M. R., Johnson, D. S., 1979. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

    MATH  Google Scholar 

  13. Hamilton, W., 1964. The genetical evolution of social behaviour. II* 1. Journal of theoretical biology 7 (1), 17–52.

    Article  Google Scholar 

  14. Haraguchi, Y., Sasaki, A., 2000. The evolution of parasite virulence and transmission rate in a spatially structured population. Journal of Theoretical Biology 203 (2), 85–96.

    Article  Google Scholar 

  15. Houchmandzadeh, B., Vallade, M., July 2011. The fixation probability of a beneficial mutation in a geographically structured population. New Journal of Physics 13 (7), 073020. http://stacks.iop.org/1367-2630/13/i=7/a=073020

  16. Keeling, M., 1999. The effects of local spatial structure on epidemiological invasions. Proceedings: Biological Sciences 266 (1421), 859–867.

    Google Scholar 

  17. Lieberman, E., Hauert, C., Nowak, M. A., 2005. Evolutionary dynamics on graphs. Nature 433 (7023), 312–316. http://dx.doi.org/10.1038/nature03204

  18. Maruyama, T., 1974. A simple proof that certain quantities are independent of the geographical structure of population. Theoretical Population Biology 5 (2), 148–154. http://www.sciencedirect.com/science/article/pii/0040580974900379

  19. Masuda, N., 2009. Directionality of contact networks suppresses selection pressure in evolutionary dynamics. Journal of Theoretical Biology 258 (2), 323–334.

    Article  MathSciNet  Google Scholar 

  20. Masuda, N., Ohtsuki, H., 2009. Evolutionary dynamics and fixation probabilities in directed networks. New Journal of Physics 11, 033012.

    Article  Google Scholar 

  21. Matsuda, H., Ogita, N., Sasaki, A., Sato, K., 1992. Statistical mechanics of population. Prog. Theor. Phys 88 (6), 1035–1049.

    Article  Google Scholar 

  22. Matsuda, H., Tamachi, N., Sasaki, A., N., O., 1987. A lattice model for population biology. In: Mathematical Topics in Biology, Morphogenesis and Neuro-sciences. Vol. 71 of Springer Lecture Notes in Biomathematics. pp. 154–161.

    Google Scholar 

  23. Moran, P., 1958. Random processes in genetics. Mathematical Proceedings of the Cambridge Philosophical Society 54 (01), 60–71.

    Article  MATH  Google Scholar 

  24. Nowak, M., May, R., 1992. Evolutionary games and spatial chaos. Nature 359 (6398), 826–829.

    Article  Google Scholar 

  25. Nowak, M., Tarnita, C., Antal, T., 2010. Evolutionary dynamics in structured populations. Philosophical Transactions of the Royal Society B: Biological Sciences 365 (1537), 19.

    Article  Google Scholar 

  26. Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M. A., May 2006. A simple rule for the evolution of cooperation on graphs and social networks. Nature 441 (7092), 502–505. http://dx.doi.org/10.1038/nature04605

  27. Ohtsuki, H., Nowak, M. A., November 2006. The replicator equation on graphs. Journal of Theoretical Biology 243 (7), 86–97. http://dx.doi.org/10.1016/j.jtbi.2006.06.004

  28. Ohtsukia, H., Nowak, M., 2008. Evolutionary stability on graphs. Journal of Theoretical Biology 251, 698–707.

    Article  MathSciNet  Google Scholar 

  29. Rychtar, J., Stadler, B., Winter 2008. Evolutionary dynamics on small-world networks. International Journal of Computational and Mathematical Sciences 2 (1).

    Google Scholar 

  30. Santos, F. C., Pacheco, J. M., Lenaerts, T., February 2006. Evolutionary dynamics of social dilemmas in structured heterogeneous populations. PNAS 103 (9), 3490–3494. http://dx.doi.org/10.1073/pnas.0508201103

  31. Shakarian, P., Roos, P., 2011. Fast and deterministic computation of fixation probability in evolutionary graphs. In: CIB ’11: The Sixth IASTED Conference on Computational Intelligence and Bioinformatics (accepted). IASTED.

    Google Scholar 

  32. Slatkin, M., May 1981. Fixation probabilities and fixation times in a subdivided population. Evolution 35 (3), 477–488.

    Google Scholar 

  33. Sood, V., Antal, T., Redner, S., 2008. Voter models on heterogeneous networks. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 77 (4), 041121. http://link.aps.org/abstract/PRE/v77/e041121

  34. Tarnita, C., Ohtsuki, H., Antal, T., Fu, F., Nowak, M., 2009. Strategy selection in structured populations. Journal of Theoretical Biology 259, 570–581.

    Article  MathSciNet  Google Scholar 

  35. Toran, J., May 2004. On the hardness of graph isomorphism. SIAM J. Comput. 33, 1093–1108. http://dx.doi.org/10.1137/S009753970241096X

  36. Van Baalen, M., 2000. Pair approximation for different spatial geometries. In: The geometry of ecological interactions: simplifying spatial complexity. Cambridge University Press, p. 359387.

    Google Scholar 

  37. Voelkl, B., Kasper, C., 2009. Social structure of primate interaction networks facilitates the emergence of cooperation. Biology Letters 5, 462–464.

    Article  Google Scholar 

  38. Zhou, A.-n., 2011. Stability analysis for various business forms. In: Zhou, Q. (Ed.), Applied Economics, Business and Development. Vol. 208 of Communications in Computer and Information Science. Springer Berlin Heidelberg, pp. 1–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Shakarian, P., Bhatnagar, A., Aleali, A., Shaabani, E., Guo, R. (2015). Evolutionary Graph Theory. In: Diffusion in Social Networks. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-23105-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23105-1_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23104-4

  • Online ISBN: 978-3-319-23105-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics