Advertisement

Filamentation and Pulse Self-compression in the Anomalous Dispersion Region of Glasses

  • A. Couairon
  • V. Jukna
  • J. Darginavičius
  • D. Majus
  • N. Garejev
  • I. Gražulevičiūtė
  • G. Valiulis
  • G. Tamošauskas
  • A. Dubietis
  • F. Silva
  • D. R. Austin
  • M. Hemmer
  • M. Baudisch
  • A. Thai
  • J. Biegert
  • D. Faccio
  • A. Jarnac
  • A. Houard
  • Y. Liu
  • A. Mysyrowicz
  • S. Grabielle
  • N. Forget
  • A. Durécu
  • M. Durand
  • K. Lim
  • E. McKee
  • M. Baudelet
  • M. Richardson
Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

The propagation of near-infrared ultra-short laser pulses in the regime of anomalous dispersion of transparent solids is associated with a host of self-induced effects including a significant spectral broadening extending from the ultraviolet into the infrared region, pulse self-compression down to few-cycle pulse durations, free and driven third harmonic generation, conical emission and the formation of stable filaments over several \(\mathop{\mathrm{cm}}\nolimits\) showing the emergence of conical light bullets. We review measurements performed in different experimental conditions and results of numerical simulations of unidirectional propagation models showing that the interpretation of all these phenomena proceeds from the formation of non-spreading conical light bullets during filamentation.

Keywords

Harmonic Generation Yttrium Aluminum Garnet Anomalous Dispersion Phase Match Condition Supercontinuum Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge support from the French National Agency for Research, the French DGA, the ONERA, the European Social Fund under the Global Grant measure (Grant No. VP1-3.1-ŠMM-07-K-03-001), the Lithuanian Science Council, the Spanish Ministerio De Economia Y Competitividad (MINECO) through “Plan Nacional” (FIS2011-30465-C02-01) and the Catalan Agencia de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) with SGR 2014-2016. This research has been supported by Fundació Cellex Barcelona, LASERLAB-EUROPE grant agreement 284464 and COST Action MP1203. F.S. was partially supported by FCT-Fundaçãso para a Ciência e a Tecnologia grant SFRH/BD/69913/2010 and D.R.A. from the Marie Curie Intra-European Fellowship program, the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC GA 306559. We acknowledge support from the US Army Research Office MURI Program and the State of Florida.

References

  1. 1.
    A. Couairon, A. Mysyrowicz, Phys. Rep. 441(2–4), 47 (2007)CrossRefADSGoogle Scholar
  2. 2.
    F. Silva, D.R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, J. Biegert, Nat. Commun. 3, 807 (2012)CrossRefADSGoogle Scholar
  3. 3.
    M. Hemmer, M. Baudisch, A. Thai, A. Couairon, J. Biegert, Opt. Express 21(23), 28095 (2013)CrossRefADSGoogle Scholar
  4. 4.
    J. Darginavičius, D. Majus, V. Jukna, N. Garejev, G. Valiulis, A. Couairon, A. Dubietis, Opt. Express 21(21), 25210 (2013)CrossRefADSGoogle Scholar
  5. 5.
    M. Durand, A. Jarnac, A. Houard, Y. Liu, S. Grabielle, N. Forget, A. Durécu, A. Couairon, A. Mysyrowicz, Phys. Rev. Lett. 110(11), 115003 (2013)CrossRefADSGoogle Scholar
  6. 6.
    M. Durand, K. Lim, V. Jukna, E. McKee, M. Baudelet, A. Houard, M. Richardson, A. Mysyrowicz, A. Couairon, Phys. Rev. A 87(4), 043820 (2013)CrossRefADSGoogle Scholar
  7. 7.
    N. Garejev, I. Gražulevičiūtė, D. Majus, G. Tamošauskas, V. Jukna, A. Couairon, A. Dubietis, Phys. Rev. A 89(3), 033856 (2014)CrossRefADSGoogle Scholar
  8. 8.
    D. Majus, G. Tamošauskas, I. Gražulevičiūtė, N. Garejev, A. Lotti, A. Couairon, D. Faccio, A. Dubietis, Phys. Rev. Lett 112(19), 193901 (2014)CrossRefADSGoogle Scholar
  9. 9.
    I. Gražulevičiūtė, G. Tamošauskas, V. Jukna, A. Couairon, D. Faccio, A. Dubietis, Opt. Express 22(25), 30613 (2014)CrossRefADSGoogle Scholar
  10. 10.
    K.D. Moll, A.L. Gaeta, Opt. Lett. 29(9), 995 (2004)CrossRefADSGoogle Scholar
  11. 11.
    M. Kolesik, E.M. Wright, J.V. Moloney, Opt. Express 13(26), 10729 (2005)CrossRefADSGoogle Scholar
  12. 12.
    M.A. Porras, A. Parola, P. Di Trapani, J. Opt. Soc. Am. B 22(7), 1406 (2005)CrossRefADSGoogle Scholar
  13. 13.
    M.J. Weber, Handbook of Optical Materials (CRC Press, New York, 2003)Google Scholar
  14. 14.
    M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, E.V. Stryland, Handbook of Optics, vol. 4, 3rd edn. (McGraw Hill, New York, 2009)Google Scholar
  15. 15.
    Y. Silberberg, Opt. Lett. 15(22), 1282 (1990)CrossRefADSGoogle Scholar
  16. 16.
    M. Kolesik, J.V. Moloney, Phys. Rev. E 70(3), 036604 (2004)CrossRefADSGoogle Scholar
  17. 17.
    A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramírez-Góngora, M. Kolesik, Eur. Phys. J. Spec. Top. 199(1), 5 (2011)Google Scholar
  18. 18.
    M.A. Porras, A. Dubietisand, E. Kučinskas, F. Bragheri, V. Degiorgio, A. Couairon, D. Faccio, P. Di Trapani, Opt. Lett. 30(24), 3398 (2005)CrossRefADSGoogle Scholar
  19. 19.
    D. Faccio, A. Averchi, A. Couairon, A. Dubietis, R. Piskarskas, A. Matijosius, F. Bragheri, M.A. Porras, A. Piskarskas, P. Di Trapani, Phys. Rev. E 74(4), 047603 (2006)CrossRefADSGoogle Scholar
  20. 20.
    M.A. Porras, A. Dubietis, A. Matijošius, R. Piskarskas, F. Bragheri, A. Averchi, P. Di Trapani, J. Opt. Soc. Am. B 24(3), 581 (2007)CrossRefADSGoogle Scholar
  21. 21.
    P.K. Bates, O. Chalus, J. Bieger, Opt. Lett. 35(9), 1377 (2010)CrossRefADSGoogle Scholar
  22. 22.
    M. Kolesik, E.M. Wright, J.V. Moloney, Phys. Rev. Lett. 92(25), 253901 (2004)CrossRefADSGoogle Scholar
  23. 23.
    D. Faccio, M. Porras, A. Dubietis, F. Bragheri, A. Couairon, P. Di Trapani, Phys. Rev. Lett. 96(19), 193901 (2006)CrossRefADSGoogle Scholar
  24. 24.
    D. Faccio, A. Matijosius, A. Dubietis, R. Piskarskas, A. Varanavičius, E. Gaižauskas, A. Piskarskas, A. Couairon, P. Di Trapani, Phys. Rev. E 72(3), 037601 (2005)CrossRefADSGoogle Scholar
  25. 25.
    D. Faccio, A. Averchi, A. Lotti, P. Di Trapani, A. Couairon, D. Papazoglou, S. Tzortzakis, Opt. Express 16(3), 1565 (2008)CrossRefADSGoogle Scholar
  26. 26.
    D. Faccio, M.A. Porras, A. Dubietis, G. Tamošauskas, E. Kučinskas, A. Couairon, P. Di Trapani, Opt. Commun. 265(2), 672 (2006)CrossRefADSGoogle Scholar
  27. 27.
    G. Valiulis, V. Jukna, O. Jedrkiewicz, M. Clerici, E. Rubino, P. Di Trapani, Phys. Rev. A 83(4), 043834 (2011)CrossRefADSGoogle Scholar
  28. 28.
    E.O. Smetanina, V.O. Kompanets, S.V. Chekalin, A.E. Dormidonov, V.P. Kandidov, Opt. Lett. 38(1), 16 (2013)CrossRefADSGoogle Scholar
  29. 29.
    T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, D. Kaplan, Appl. Phys. B 99(1–2), 7 (2010)CrossRefADSGoogle Scholar
  30. 30.
    A. Lotti, A. Couairon, D. Faccio, P. Di Trapani, Phys. Rev. A 81(2), 023810 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • A. Couairon
    • 1
  • V. Jukna
    • 1
  • J. Darginavičius
    • 2
  • D. Majus
    • 2
  • N. Garejev
    • 2
  • I. Gražulevičiūtė
    • 2
  • G. Valiulis
    • 2
  • G. Tamošauskas
    • 2
  • A. Dubietis
    • 2
  • F. Silva
    • 3
  • D. R. Austin
    • 3
  • M. Hemmer
    • 3
  • M. Baudisch
    • 3
  • A. Thai
    • 3
  • J. Biegert
    • 3
    • 4
  • D. Faccio
    • 5
  • A. Jarnac
    • 6
  • A. Houard
    • 6
  • Y. Liu
    • 6
  • A. Mysyrowicz
    • 6
  • S. Grabielle
    • 7
  • N. Forget
    • 7
  • A. Durécu
    • 8
  • M. Durand
    • 6
    • 9
  • K. Lim
    • 9
  • E. McKee
    • 9
  • M. Baudelet
    • 9
  • M. Richardson
    • 9
  1. 1.Centre de Physique ThéoriqueCNRS, Ecole PolytechniquePalaiseauFrance
  2. 2.Department of Quantum ElectronicsVilnius UniversityVilniusLithuania
  3. 3.ICFO—Institut de Ciències FotòniquesMediterranean Technology ParkBarcelonaSpain
  4. 4.ICREA—Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain
  5. 5.School of Engineering and Physical SciencesHeriot-Watt UniversityEdinburghUK
  6. 6.Laboratoire d’Optique Appliquée, ENSTA ParisTech, Ecole PolytechniqueCNRSPalaiseauFrance
  7. 7.FASTLITECentre Scientifique d’OrsayOrsayFrance
  8. 8.Onera-The French Aerospace LabPalaiseau CedexFrance
  9. 9.Townes Laser Institute, CREOL-The College of Optics and PhotonicsUniversity of Central FloridaOrlandoUSA

Personalised recommendations