Advertisement

THz Waveforms and Polarization from Laser Induced Plasmas by Few-Cycle Pulses

  • Peng LiuEmail author
  • Ruxin Li
  • Zhizhan Xu
Chapter
  • 777 Downloads
Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

Terahertz (\(\mathop{\mathrm{THz}}\nolimits\)) emission from air plasmas induced by intense few-cycle laser fields is investigated to achieve controllable waveforms and polarizations. Linearly and circularly carrier envelope phase (CEP) stabilized few-cycle laser pulses are produced using a home-built three-stage optical parametric amplifier (OPA) system and a hollow fiber compressor. Focusing the linearly polarized few-cycle pulses into air, \(\mathop{\mathrm{THz}}\nolimits\) waveform varies by changing the detected filament length and the CEP of driving pulses. Simulation using the photocurrent model including the propagation effects reveals the phase evolution inside the filament. The ellipticity and conversion efficiency of \(\mathop{\mathrm{THz}}\nolimits\) radiation are found dependent on the pulse duration of circularly polarized few-cycle pulses. Both the asymmetry and ellipticity of the driving pulses significantly affect the polarization of the generated \(\mathop{\mathrm{THz}}\nolimits\) waves. The direction of the elliptically polarized \(\mathop{\mathrm{THz}}\nolimits\) radiation rotates by varying the CEP of few-cycle pulses. Such waveform and polarization controllable \(\mathop{\mathrm{THz}}\nolimits\) emission is of great importance due to its potential application in \(\mathop{\mathrm{THz}}\nolimits\) sensing and coherent control of quantum systems. The evolution of \(\mathop{\mathrm{THz}}\nolimits\) waveform provides a sensitive probe to the variation of the CEP of propagating intense few-cycle pulses. The number and positions of the inversions of \(\mathop{\mathrm{THz}}\nolimits\) polarity are dependent on the initial CEP, which is constantly near \(0.5\uppi\) under varied driving pulse energies as two inversions become one. This provides a method of measuring the initial CEP at an accuracy that is only limited by the stability of the driving few-cycle pulses.

Keywords

Laser Field Optical Parametric Amplification Carrier Envelope Phase Optical Parametric Amplification Intense Laser Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge the support from National Natural Science Foundation of China (Grant Nos. 11274326, 1127901, 61221064 and 11134010), the 973 Program of China (2011CB808103), and the State Key Laboratory of High Field Laser Physics of China.

References

  1. 1.
    T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mahrlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, R. Huber, Nat. Photon. 5(1), 31 (2011)CrossRefADSGoogle Scholar
  2. 2.
    R. Ulbricht, E. Hendry, T.F.H. Jie Shan, M. Bonn, Rev. Mod. Phys. 83(2), 543 (2011)CrossRefADSGoogle Scholar
  3. 3.
    J. Liu, J. Dai, S.L. Chin, X.C. Zhang, Nat. Photon. 4(9), 627 (2010)CrossRefADSGoogle Scholar
  4. 4.
    C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, V.T. Tikhonchuk, Phys. Rev. Lett. 98(23), 235002 (2007)CrossRefADSGoogle Scholar
  5. 5.
    T.I. Oh, Y.J. Yoo, Y.S. You, K.Y. Kim, Appl. Phys. Lett. 105(4), 041103 (2014)CrossRefADSGoogle Scholar
  6. 6.
    X. Xie, J. Dai,, X.C. Zhang, Phys. Rev. Lett. 96(7), 075005 (2006)CrossRefADSGoogle Scholar
  7. 7.
    K.Y. Kim, J.H. Glownia, A.J. Taylor, G. Rodriguez, Opt. Express 15(8), 4577 (2007)CrossRefADSGoogle Scholar
  8. 8.
    K.Y. Kim, A.J. Taylor, J.H. Glownia, G. Rodriguez, Nat. Photon. 2(10), 605 (2008)CrossRefGoogle Scholar
  9. 9.
    H.G. Roskos, M.D. Thomson, M. Kreß, T.L. Löffler, Laser Photon. Rev. 1(4), 349 (2007)CrossRefGoogle Scholar
  10. 10.
    F. Théberge, M. Châteauneuf, G. Roy, P. Mathieu, J. Dubois, Phys. Rev. A 81(3), 033821 (2010)CrossRefADSGoogle Scholar
  11. 11.
    H. Wen, A.M. Lindenberg, Phys. Rev. Lett. 103(2), 023902 (2009)CrossRefADSGoogle Scholar
  12. 12.
    J. Dai, N. Karpowicz, X.C. Zhang, Phys. Rev. Lett. 103(2), 023001 (2009)CrossRefADSGoogle Scholar
  13. 13.
    M. Kreß, T. Löffler, M.D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, H.G. Roskos, Nat. Phys. 2(5), 327 (2006)CrossRefGoogle Scholar
  14. 14.
    A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V.S. Yakovlev, A. Scrinzi, T.W. Hansch, F. Krausz, Nature 421(6923), 611 (2003)CrossRefADSGoogle Scholar
  15. 15.
    A. Apolonski, P. Dombi, G.G. Paulus, M. Kakehata, R. Holzwarth, Th. Udem, Ch. Lemell, K. Torizuka, J. Burgdörfer, T.W. Hänsch, F. Krausz, Phys. Rev. Lett. 92(7), 073902 (2004)CrossRefADSGoogle Scholar
  16. 16.
    T.M. Fortier, P.A. Roos, D.J. Jones, S.T. Cundiff, R.D.R. Bhat, J.E. Sipe, Phys. Rev. Lett. 92(14), 147403 (2004)CrossRefADSGoogle Scholar
  17. 17.
    T. Nakajima, S. Watanabe, Phys. Rev. Lett. 96(21), 213001 (2006)CrossRefADSGoogle Scholar
  18. 18.
    Y. Wu, X. Yang, Phys. Rev. A 76(1), 013832 (2007)CrossRefADSGoogle Scholar
  19. 19.
    M. Hentschel, R. Kienberger, Ch. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Nature 414(6863), 509 (2001)CrossRefADSGoogle Scholar
  20. 20.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81(1), 163 (2009)CrossRefADSGoogle Scholar
  21. 21.
    M.F. Kling, Ch. Siedschlag, A.J. Verhoef, J.I. Khan, M. Schultze, Th. Uphues, Y. Ni, M. Uiberacker, M. Drescher, F. Krausz, M.J.J. Vrakking, Science 312(5771), 246 (2006)CrossRefADSGoogle Scholar
  22. 22.
    H.C. Wu, J.M. ter Vehn, Z.M. Sheng, New J. Phys. 10(4), 043001 (2008)CrossRefADSGoogle Scholar
  23. 23.
    A.A. Silaev, N. Vvedenskii, Phys. Rev. Lett. 102(11), 115005 (2009)CrossRefADSGoogle Scholar
  24. 24.
    I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, T. Elsaesser, Phys. Rev. Lett. 105(05), 053903 (2010)CrossRefADSGoogle Scholar
  25. 25.
    L. Bergé, S. Skupin, C. Köhler, I. Babushkin, J. Herrmann, Phys. Rev. Lett. 110(7), 073901 (2013)CrossRefADSGoogle Scholar
  26. 26.
    N.V. Vvedenskii, A.I. Korytin, V.A. Kostin, A.A. Murzanev, A.A. Silaev, A.N. Stepanov, Phys. Rev. Lett. 112(5), 055004 (2014)CrossRefADSGoogle Scholar
  27. 27.
    I. Babushkin, S. Skupin, A. Husakou, C. Köhler, E. Cabrera-Granado, L. Bergé, J. Herrmann, New J. Phys. 13(12), 123029 (2011)CrossRefGoogle Scholar
  28. 28.
    A. Baltuška, T. Fuji, T. Kobayashi, Phys. Rev. Lett. 88(13), 133901 (2002)CrossRefADSGoogle Scholar
  29. 29.
    C. Vozzi, C. Manzoni, F. Calegari, E. Benedetti, G. Sansone, G. Cerullo, M. Nisoli, S. De Silvestri, S. Stagira, J. Opt. Soc. Am. B 25(7), B112 (2008)CrossRefADSGoogle Scholar
  30. 30.
    X. Gu, G. Marcus, Y. Deng, T. Metzger, C. Teisset, N. Ishii, T. Fuji, A. Baltuska, R. Butkus, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, R. Kienberger, F. Krausz, Opt. Express 17(1), 62 (2009)CrossRefADSGoogle Scholar
  31. 31.
    O.D. Mücke, S. Ališauskas, A.J. Verhoef, A. Pugžlys, A. Baltuška, V. Smilgevičius, J. Pocius, L. Giniūnas, R. Danielius, N. Forget, Opt. Lett. 34(16), 2498 (2009)CrossRefGoogle Scholar
  32. 32.
    B.E. Schmidt, P. Béjot, M. Giguère, A.D. Shiner, C. Trallero-Herrero, É. Bisson, J. Kasparian, J.P. Wolf, D.M. Villeneuve, J.C. Kieffer, P.B. Corkum, F. Légaré, Appl. Phys. Lett. 96(12), 121109 (2010)CrossRefADSGoogle Scholar
  33. 33.
    P. Béjot, B.E. Schmidt, J. Kasparian, J.P. Wolf, F. Legaré, Phys. Rev. A 81(6), 063828 (2010)CrossRefADSGoogle Scholar
  34. 34.
    C. Li, D. Wang, L. Song, J. Liu, P. Liu, C. Xu, Y. Leng, R. Li, Z. Xu, Opt. Express 19(7), 6783 (2011)CrossRefADSGoogle Scholar
  35. 35.
    C. Vozzi, F. Calegari, E. Benedetti, S. Gasilov, G. Sansone, G. Cerullo, M. Nisoli, S.D. Silvestri, S. Stagira, Opt. Lett. 32(20), 2957 (2007)CrossRefADSGoogle Scholar
  36. 36.
    T. Kobayashi, A. Baltuška, Meas. Sci. Technol. 13(11), 1671 (2002)CrossRefADSGoogle Scholar
  37. 37.
    B.E. Schmidt, P. Béjot, M. Giguère, A.D. Shiner, C. Trallero-Herrero, É. Bisson, J. Kasparian, J.P. Wolf, D.M. Villeneuve, J.C. Kieffer, P.B. Corkum, F. Légaré, Appl. Phys. Lett. 96(12), 121109 (2010)CrossRefADSGoogle Scholar
  38. 38.
    R. Trebino, K.W. DeLong, D.N. Fittinghoff, J.N. Sweetser, M.A. Krumbügel, B.A. Richman, D. Kane, Rev. Sci. Instrum. 68(9), 3277 (1997)CrossRefADSGoogle Scholar
  39. 39.
    A. Baltuška, M.S. Pshenichnikov, D.A. Wiersma, IEEE J. Quant. Electron. 35(4), 459 (1999)CrossRefADSGoogle Scholar
  40. 40.
    W.L. Chan, J. Deibel, D.M. Mittleman, Rep. Prog. Phys. 70(8), 1325 (2007)CrossRefADSGoogle Scholar
  41. 41.
    K. Kitano, N. Ishii, J. Itatani, Phys. Rev. A 84(5), 053408 (2011)CrossRefADSGoogle Scholar
  42. 42.
    Q. Wu, X.C. Zhang, Appl. Phys. Lett. 67(24), 3523 (1995)CrossRefADSGoogle Scholar
  43. 43.
    Y. Bai, L. Song, R. Xu, C. Li, P. Liu, Z. Zeng, Z. Zhang, H. Lu, R. Li, Z. Xu, Phys. Rev. Lett. 108(25), 255004 (2012)CrossRefADSGoogle Scholar
  44. 44.
    J. Liu, R. Li, Z. Xu, Phys. Rev. A 74(4), 043801 (2006)CrossRefADSGoogle Scholar
  45. 45.
    C. Köhler, E. Cabrera-Granado, I. Babushkin, L. Bergé, J. Herrmann, S. Skupin, Opt. Lett. 36(16), 3166 (2011)CrossRefADSGoogle Scholar
  46. 46.
    M.A. Porras, Phys. Rev. E 65(2), 026606 (2002)MathSciNetCrossRefADSGoogle Scholar
  47. 47.
    N.C.J. van der Valk, W.A.M. van der Marel, P.C.M. Planken, Opt. Lett. 30(20), 2802 (2005)CrossRefADSGoogle Scholar
  48. 48.
    E. Castro-Camus, J. Lloyd-Hughes, M.B. Johnston, Appl. Phys. Lett. 86(25), 254102 (2005)CrossRefADSGoogle Scholar
  49. 49.
    N. Kanda, K. Konishi, M. Kuwata-Gonokami, Opt. Express 15(18), 11117 (2007)CrossRefADSGoogle Scholar
  50. 50.
    S. Hughes, D.S. Citrin, J. Opt. Soc. Am. B 17(1), 128 (2000)CrossRefADSGoogle Scholar
  51. 51.
    J.L. McHale, Molecular Spectroscopy (Prentice Hall, Englewood Cliffs, 1999)Google Scholar
  52. 52.
    J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R.R. Birge, S.J. Allen, K. Plaxco, in Proceedings of SPIE Conference on Chemical and Biological Standoff Detection, vol. 5268, ed. by J.O. Jensen, J.M. Thériault (SPIE, Providence, 2004), pp. 19–26Google Scholar
  53. 53.
    X. Lu, X.C. Zhang, Phys. Rev. Lett. 108(12), 123903 (2012)CrossRefADSGoogle Scholar
  54. 54.
    F. Jahangiri, M. Hashida, S. Tokita, T. Nagashima, M. Hangyo, S. Sakabe, Appl. Phys. Lett. 99(16), 161505 (2011)CrossRefADSGoogle Scholar
  55. 55.
    L. Song, Y. Bai, R. Xu, C. Li, P. Liu, R. Li, Z. Xu, Appl. Phys. Lett. 103(26), 261102 (2013)CrossRefADSGoogle Scholar
  56. 56.
    Y. Chen, C. Marceau, W. Liu, Z.D. Sun, Y. Zhang, F. Théberge, M. Châteauneuf, J. Dubois, S.L. Chin, Appl. Phys. Lett. 93(23), 231116 (2008)CrossRefADSGoogle Scholar
  57. 57.
    G.G. Paulus, F. Lindner, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, F. Krausz, Phys. Rev. Lett. 91(25), 253004 (2003)CrossRefADSGoogle Scholar
  58. 58.
    T. Wittmann, B. Horvath, W. Helml, M.G. Schatzel, X. Gu, A.L. Cavalieri, G.G. Paulus, R. Kienberger, Nat. Phys. 5(5), 357 (2009)CrossRefGoogle Scholar
  59. 59.
    C.A. Haworth, L.E. Chipperfield, J.S. Robinson, P.L. Knight, J.P. Marangos, J.W.G. Tisch, Nat. Phys. 3(1), 52 (2007)CrossRefGoogle Scholar
  60. 60.
    R. Xu, Y. Bai, L. Song, P. Liu, R. Li, Z. Xu, Appl. Phys. Lett. 103(6), 061111 (2013)CrossRefADSGoogle Scholar
  61. 61.
    F. Lindner, G.G. Paulus, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, F. Krausz, Phys. Rev. Lett. 92, 113001 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiChina

Personalised recommendations