Skip to main content

Elucidation of Neuronal Circuitry Involved in the Regulation of Sleep/Wakefulness Using Optogenetics

  • Chapter
  • First Online:
Orexin and Sleep

Abstract

The mechanisms of instinctive behaviors such as feeding, drinking, sexual activity and sleep/wakefulness can only be studied in the whole animal with intact neural networks. This has been difficult due to lack of techniques to control the activity of specific neurons in intact animals. Optogenetics is a recent technique, which enables such control using light and allows the study of regulatory mechanisms of instinctive behaviors. In this section, we introduce how optogenetics was applied to orexin/hypocretin neurons to reveal the regulatory mechanisms of sleep and wakefulness. Activity manipulation of orexin neurons controls the state changes among wakefulness, non-rapid eye movement (NREM) sleep and REM sleep state. Selective activation of orexin neurons using channelrhodopsin-2 (ChR2) or melanopsin (OPN4) induced transition from sleep to wakefulness. In contrast, suppression of these neurons using halorhodopsin (HaloR) or archaerhodopsin (ArchR) induced transition from wakefulness to NREM sleep and increased the time spent in NREM sleep. These studies help answer how orexin neurons contribute to regulate sleep/wakefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450(7168):420–424. doi:10.1038/nature06310

    Article  CAS  PubMed  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268. doi:10.1038/nn1525

    Article  CAS  PubMed  Google Scholar 

  • Brown RE, Sergeeva OA, Eriksson KS, Haas HL (2002) Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J Neurosci: Official J Soc Neurosci 22(20):8850–8859

    CAS  Google Scholar 

  • Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, de Lecea L (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13(12):1526–1533. doi:10.1038/nn.2682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98(4):437–451

    Article  CAS  PubMed  Google Scholar 

  • Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463(7277):98–102. doi:10.1038/nature08652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, Sugiyama F, Yagami K, Goto K, Yanagisawa M, Sakurai T (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30(2):345–354

    Article  CAS  PubMed  Google Scholar 

  • Liu RJ, van den Pol AN, Aghajanian GK (2002) Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci: Official J Soc Neurosci 22(21):9453–9464

    CAS  Google Scholar 

  • Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46(5):787–798. doi:10.1016/j.neuron.2005.04.035

    Article  CAS  PubMed  Google Scholar 

  • Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355(9197):39–40. doi:10.1016/s0140-6736(99)05582-8

    Article  CAS  PubMed  Google Scholar 

  • Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, Nevsimalova S, Aldrich M, Reynolds D, Albin R, Li R, Hungs M, Pedrazzoli M, Padigaru M, Kucherlapati M, Fan J, Maki R, Lammers GJ, Bouras C, Kucherlapati R, Nishino S, Mignot E (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6(9):991–997. doi:10.1038/79690

    Article  CAS  PubMed  Google Scholar 

  • Rechtschaffen A, Gilliland MA, Bergmann BM, Winter JB (1983) Physiological correlates of prolonged sleep deprivation in rats. Science 221(4606):182–184

    Article  CAS  PubMed  Google Scholar 

  • Tsunematsu T, Kilduff TS, Boyden ES, Takahashi S, Tominaga M, Yamanaka A (2011) Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J Neurosci: the official journal of the Society for Neuroscience 31(29):10529–10539. doi:10.1523/JNEUROSCI.0784-11.2011

    Article  CAS  Google Scholar 

  • Tsunematsu T, Tanaka KF, Yamanaka A, Koizumi A (2012) Ectopic expression of melanopsin in orexin/hypocretin neurons enables control of wakefulness of mice in vivo by blue light. Neurosci Res. doi:10.1016/j.neures.2012.07.005

    PubMed  Google Scholar 

  • Tsunematsu T, Tabuchi S, Tanaka KF, Boyden ES, Tominaga M, Yamanaka A (2013) Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behav Brain Res 255:64–74. doi:10.1016/j.bbr.2013.05.021

    Article  CAS  PubMed  Google Scholar 

  • Willie JT, Chemelli RM, Sinton CM, Tokita S, Williams SC, Kisanuki YY, Marcus JN, Lee C, Elmquist JK, Kohlmeier KA, Leonard CS, Richardson JA, Hammer RE, Yanagisawa M (2003) Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Neuron 38(5):715–730

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka A, Tsujino N, Funahashi H, Honda K, Guan JL, Wang QP, Tominaga M, Goto K, Shioda S, Sakurai T (2002) Orexins activate histaminergic neurons via the orexin 2 receptor. Biochem Biophys Res Commun 290(4):1237–1245. doi:10.1006/bbrc.2001.6318

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Yamanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yamanaka, A., Tsunematsu, T. (2015). Elucidation of Neuronal Circuitry Involved in the Regulation of Sleep/Wakefulness Using Optogenetics. In: Sakurai, T., Pandi-Perumal, S., Monti, J. (eds) Orexin and Sleep. Springer, Cham. https://doi.org/10.1007/978-3-319-23078-8_6

Download citation

Publish with us

Policies and ethics