Skip to main content

Abstract

Anaerobic soil disinfestation is a biologically based, preplant soil treatment that provides an alternative to chemical fumigation for soilborne pest and disease management. The method involves the incorporation of organic amendments that contain a labile carbon source, covering soil with clear or gas-impermeable polyethylene tarp, and irrigating until saturation. Populations of facultative anaerobes utilize the carbon source and deplete the soil of oxygen for a short period of time. The approach has been tested for use in multiple crops, soil types, and regions and inputs can be modified to target specific pathogens. It is a particularly valuable tool for use in organic production, for use in fumigant buffer zones, and for use in regions where soil solarization is not feasible due to environmental constraints. In addition to oxygen depletion, the mechanisms involved in disease suppression include biological control and the production of organic acids. Significant shifts in the composition of the soil microbial community occur during the treatment, and the effects of ASD can be seen beyond the first cropping system and have the potential to contribute to the development of a disease-suppressive soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bae H, Roberts DP, Lim HS, Strem MD, Park SC, Ryu CM, Melnick RL, Bailey BA (2011) Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant Microbe Interact 24:336–351

    Article  CAS  PubMed  Google Scholar 

  • Bailey KL, Lazarovits G (2003) Suppressing soil-borne diseases with residue management and organic amendments. Soil Till Res 72:169–180

    Article  Google Scholar 

  • Baker KF, James Cook R (1974) Biological control of plant pathogens. WH Freeman and Company, San Francisco, CA

    Google Scholar 

  • Bello A, Porter I, Díez-Rojo MA, Rodríguez-Kábana R (2008) Soil biodisinfection for the management of soil-borne pathogens and weeds. In: 3rd international biofumigation symposium, Canberra, Australia, p 35

    Google Scholar 

  • Blok WJ, Coenen TCM, Termorshuizen AJ, Lamers JG (2005) The potential of biological soil disinfestation to manage Fusarium foot and root rot in asparagus. Acta Hortic 776:135–144

    Google Scholar 

  • Blok WJ, Lamers JG, Termorshuizen AJ, Bollen GJ (2000) Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 90:253–259

    Article  CAS  PubMed  Google Scholar 

  • Bohn HL, McNeal BL, O’Connor GA (1985) Soil chemistry. Wiley, New York

    Google Scholar 

  • Broadbent FL, Stojanovic BF (1952) The effect of partial pressure of oxygen on some soil nitrogen transformations. Soil Sci Soc Am J 16:359–363

    Article  CAS  Google Scholar 

  • Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5:85–96

    Article  Google Scholar 

  • Butler DM, Eichler Inwood SE, McCarty DG, Sams CE, Wszelaki AL, Dee ME, Ownley BH (2012a) Optimizing anaerobic soil disinfestation for Tennessee. In: Proceedings of annual international research conference of methyl bromide alternatives and emissions reductions, Orlando, FL, pp 13.11–13.14

    Google Scholar 

  • Butler DM, Kokalis-Burelle N, Muramoto J, Shennan C, McCollum TG, Rosskopf EN (2012b) Impact of anaerobic soil disinfestation combined with soil solarization on plant–parasitic nematodes and introduced inoculum of soilborne plant pathogens in raised-bed vegetable production. Crop Prot 39:33–40

    Article  CAS  Google Scholar 

  • Butler DM, Rosskopf EN, Kokalis-Burelle N, Albano JP, Muramoto J, Shennan C (2012c) Exploring warm-season cover crops as carbon sources for anaerobic soil disinfestation (ASD). Plant Soil 355:149–165

    Article  CAS  Google Scholar 

  • Butler DM, Kokalis-Burelle N, Albano JP, McCollum TG, Muramoto J, Shennan C, Rosskopf EN (2014a) Anaerobic soil disinfestation (ASD) combined with soil solarization as a methyl bromide alternative: vegetable crop performance and soil nutrient dynamics. Plant Soil 378:365–381

    Article  CAS  Google Scholar 

  • Butler DM, Shrestha U, Dee ME, EichlerInwood SE, McCarty DG, Ownley BH, Rosskopf EN (2014b) Low carbon amendment rates during anaerobic soil disinfestation (ASD) at moderate soil temperatures do not decrease viability of Sclerotinia sclerotiorum sclerotia or fusarium root rot of common bean. In: VIII international symposium on chemical and non-chemical soil and substrate disinfestation, vol 1044, Torino, Italy, pp 203–208

    Google Scholar 

  • Cao Y, Chang Z, Wang J, Ma Y, Yang H, Fu G (2014) Potential use of anaerobically digested manure slurry to suppress phytophthora root rot of chilli pepper. Sci Hortic 168:124–131

    Article  Google Scholar 

  • Chen Y, Gamliel A, Stapleton JJ, Aviad T (1991) Chemical, physical, and microbial changes related to plant growth in disinfested soils. In: Katan J, DeVay JE (eds) Soil solarization. CRC, Boca Raton

    Google Scholar 

  • Conn KL, Topp E, Lazarovits G (2005) Factors influencing the concentration of volatile fatty acids, ammonia, and other nutrients in stored liquid pig manure. J Environ Qual 36:440–447

    Article  Google Scholar 

  • Daugovish O, Shennan C, Muramoto J, Koike S (2011) Anaerobic soil disinfestation for southern California strawberry. In: Proceedings of annual international research conference on methyl bromide alt emissions reductions, San Diego, CA, pp 2-1/2-4

    Google Scholar 

  • Domínguez P, Miranda L, Soria C, de los Santos B, Chamorro M, Romero F, Daugovish O, López-Aranda JM, Medina JJ (2014) Soil biosolarization for sustainable strawberry production. Agron Sustain Dev 34:821–829

    Article  Google Scholar 

  • Doran JW (1980) Soil microbial and biochemical changes associated with reduced tillage. Soil Sci Soc Am J 44:765–771

    Article  CAS  Google Scholar 

  • Ebihara Y, Uematsu S (2014) Survival of strawberry-pathogenic fungi Fusarium oxysporum f. sp. fragariae, Phytophthora cactorum and Verticillium dahliae under anaerobic conditions. J Gen Plant Pathol 80:50–58

    Article  Google Scholar 

  • Faulkner SP, Richardson CJ (1989) Physical and chemical characteristics of freshwater wetland soils. In: Hammer DA (ed) Constructed wetlands for wastewater treatment: municipal, industrial, agricultural. CRC, Boca Raton

    Google Scholar 

  • Fox GE, Wisotzkey JD, Jurtshuk P Jr (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Matsuoka H, Hirooka K (2007) Regulation of fatty acid metabolism in bacteria. Mol Microbiol 66:829–839

    Article  CAS  PubMed  Google Scholar 

  • García Ruíz A, Tello JC, Avilés M, Ordovás J (2009) Fusariosis del clavel (Fusarium oxysporum f. sp. dianthi). In: Agrotécnicas SL (ed) Últimos avances en su control. Madrid, p 275

    Google Scholar 

  • Goud JC, Termorshuizen AJ, Blok WJ, van Bruggen AH (2004) Long-term effect of biological soil disinfestation on verticillium wilt. Plant Dis 88:688–694

    Article  Google Scholar 

  • Guenzi WD, Beard WE (1981) Volatile fatty acids in a redox-controlled cattle manure slurry. J Environ Qual 10:479–482

    Article  CAS  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hewavitharana SS, Mazzola M (2013) Carbon source-dependent efficacy of anaerobic soil disinfestation (ASD) in suppression of rhizoctonia root rot of apple. Phytopathology 103:60–60

    Google Scholar 

  • Hewavitharana SS, Ruddell D, Mazzola M (2014) Carbon source-dependent antifungal and nematicidal volatiles derived during anaerobic soil disinfestation. Eur J Plant Pathol 140:39–52

    Article  CAS  Google Scholar 

  • Hong JC, Martian KJ, Kokalis-Burelle N, Butler D, Rosskopf EN (2014) Comparison of soil bacterial communities from fields treated with Anaerobic Soil Disinfestation located on Florida’s east to west coast. Phytopathology 11:S518

    Google Scholar 

  • Horn MA, Schramm A, Drake HL (2003) The earthworm gut: an ideal habitat for ingested N2O-producing microorganisms. Appl Environ Microbiol 69:1662–1669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang X, Wen T, Zhang J, Meng L, Zhu T, Cai Z (2015) Toxic organic acids produced in biological soil disinfestation mainly caused the suppression of Fusarium oxysporum f. sp. cubense. BioControl 60:113–124

    Google Scholar 

  • Inglett PW, Reddy KR, Corstanje R (2005) Anaerobic soils. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Amsterdam

    Google Scholar 

  • Johnson JL, Ordal EJ (1968) Deoxyribonucleic acid homology in bacterial taxonomy: effect on incubation temperature on reaction specificity. J Bacteriol 95:893–900

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, van Hees PAW (2003) Organic acid behaviour is soils – misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Joshi R, McSpadden Gardener BB (2006) Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis. Phytopathology 96:145–154

    Article  CAS  PubMed  Google Scholar 

  • Katase M, Kubo C, Ushio S, Ootsuka E, Takeuchi T, Mizukubo T (2009) Nematicidal activity of volatile fatty acids generated from wheat bran in reductive soil disinfestation. Nematol Res 39:53–62

    Article  Google Scholar 

  • Khalil K, Mary B, Renault P (2004) Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. Soil Biol Biochem 36:687–699

    Article  CAS  Google Scholar 

  • Kirkegaard JA, Angus JF Gardner PA, Cresswell HP (1993) Benefits of brassica break crops in the Southeast wheatbelt. In: Proceedings of 7th Australian agronomy conference, Adelaide, pp 19–24

    Google Scholar 

  • Kobara Y, Uematsu S, Tanaka-Miwa C, Sato R, Sato M (2007) Possibility of the new soil fumigation technique with ethanol solution. In: Proceedings of annual international research conference on methyl bromide alt emissions reductions, San Diego, CA, pp 114-1/114-2

    Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157(1):1–14

    Article  Google Scholar 

  • Korthals GW, Thoden TC, van den Berg W, Visser JHM (2014) Long-term effects of eight soil health treatments to control plant-parasitic nematodes and Verticillium dahliae in agro-ecosystems. Appl Soil Ecol 76:112–123

    Article  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon inputs by plants into the soil. Rev J Plant Nutr Soil Sci 163:421–431

    Article  CAS  Google Scholar 

  • Lacasa CM, Guerrero MM, Ros C, Martínez V, Lacasa A, Fernández P, Núñez-Zofío M, Larregla S, Martínez MA, Díez-Rojo MA, Bello A (2010) Efficacy of biosolarization with sugar beet vinasses for soil disinfestation in pepper greenhouses. Acta Hortic 883:345–352

    Article  Google Scholar 

  • Lamers JG, Runia WT, Molendijk LPG, Bleeker PO (2010) Perspectives of anaerobic soil disinfestation. Acta Hortic 883:277–283

    Article  Google Scholar 

  • Lamont WJ Jr (1996) What are the components of a plasticulture vegetable system? Hortic Technol 6:150–154

    Google Scholar 

  • Lazarovits G, Conn KL, Abbasi PA, Tenuta M (2003) Control of soilborne plant pathogens with organic amendments: challenges and possibilities. In: Proceedings of eighth international congress plant pathology, vol 2, p 273

    Google Scholar 

  • Linn DM, Doran JW (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1267–1272

    Article  CAS  Google Scholar 

  • Ludeking DJW, Paternotte SJ, Runia WT, Molendijk LPG (2010) Biological soil disinfestation with organic fermentation products. In: I international symposium on organic greenhouse horticulture, vol 915, pp 133–139

    Google Scholar 

  • Marschner B, Noble AD (2000) Chemical and biological processes leading to the neutralization of acidity in soil incubated with litter materials. Soil Biol Biochem 32:805–813

    Article  CAS  Google Scholar 

  • Martínez MA, Martínez MC, Bielza P, Tello J, Lacasa A (2011) Effect of biofumigation with manure amendments and repeated biosolarization on Fusarium densities in pepper crops. J Ind Microbiol Biotechnol 38:3–11

    Article  PubMed  Google Scholar 

  • Matthiessen JN, Kirkegaard JA (2006) Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Crit Rev Plant Sci 25:235–265

    Article  CAS  Google Scholar 

  • Mazzola M (2010) Management of resident soil microbial community structure and function to suppress soilborne disease development. Clim Change Crop Prod 1:200–218

    Article  Google Scholar 

  • Mazzola M (2011) Potential of biofumigation of soilborne pest control in strawberry. In: Proceedings of annual international research conference on methyl bromide alt emissions reductions, San Diego, CA, pp 47-1/47-2

    Google Scholar 

  • Mazzola M, Manici LM (2012) Apple replant disease: role of microbial ecology in cause and control. Annu Rev Phytopathol 50:45–65

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M, Muramoto J, Shennan C (2012a) Transformation of soil microbial community structure in response to anaerobic soil disinfestation for soilborne disease control in strawberry. Phytopathology 102:S4.77

    Google Scholar 

  • Mazzola M, Shennan C, Muramoto J (2012b) Application sequence and soil biology influence anaerobic soil disinfestation induced disease suppression. In: Proceedings of annual international research conference on methyl bromide alternatives and emissions reductions, Orlando, pp 57-1/57-3

    Google Scholar 

  • McCarty DG, Inwood SEE, Ownley BH, Sams CE, Wszelaki AL, Butler DM (2014) Field evaluation of carbon sources for anaerobic soil disinfestation in tomato and bell pepper production in Tennessee. HortSci 49:272–280

    Google Scholar 

  • Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15:1409–1416

    Article  CAS  Google Scholar 

  • Messiha NAS, van Diepeningen AD, Wenneker M, van Beuningen AR, Janse JD, Coenen TGC, Termorshuizen AJ, van Bruggen AHC, Blok WJ (2007) Biological soil disinfestation (BSD), a new control method for potato brown rot, caused by Ralstonia solanacearum race 3 biovar 2. Eur J Plant Pathol 117:403–415

    Article  Google Scholar 

  • Momma N (2008) Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Japan Agric Res Q 42:7–12

    Article  CAS  Google Scholar 

  • Momma N, Usami T, Amemiya Y, Shishido M (2005) Factors involved in the suppression of Fusarium oxysporum f. sp. lycopersici by soil reduction. Soil Microorg 59:27–33

    Google Scholar 

  • Momma N, Yamamoto K, Simandi P, Shishido M (2006) Role of organic acids in the mechanisms of biological soil disinfestation (BSD). J Gen Plant Pathol 72:247–252

    Article  CAS  Google Scholar 

  • Momma N, Momma M, Kobara Y (2010) Biological soil disinfestation using ethanol: effect on Fusarium oxysporum f. sp. lycopersici and soil microorganisms. J Gen Plant Pathol 76:336–344

    Article  CAS  Google Scholar 

  • Momma N, Kobara Y, Momma M (2011) Fe2+ and Mn2+, potential agents to induce suppression of Fusarium oxysporum for biological soil disinfestation. J Gen Plant Pathol 77:331–335

    Article  CAS  Google Scholar 

  • Momma N, Kobara Y, Uematsu S, Kita N, Shinmura A (2013) Development of biological soil disinfestations in Japan. Appl Microbiol Biotechnol 97:3801–3809

    Article  CAS  PubMed  Google Scholar 

  • Mowlick S, Hirota K, Takehara T, Kaku N, Ueki K, Ueki A (2012) Development of anaerobic bacterial community consisted of diverse clostridial species during biological soil disinfestation amended with plant biomass. Soil Sci Plant Nutr 58:273–287

    Article  Google Scholar 

  • Mowlick S, Inoue T, Takehara T, Kaku N, Ueki K, Ueki A (2013a) Changes and recovery of soil bacterial communities influenced by biological soil disinfestation as compared with chloropicrin-treatment. AMB Express 3:46

    Article  PubMed Central  PubMed  Google Scholar 

  • Mowlick S, Takehara T, Kaku N, Ueki K, Ueki A (2013b) Proliferation of diversified clostridial species during biological soil disinfestation incorporated with plant biomass under various conditions. Appl Microbiol Biotechnol 97:8365–8379

    Article  CAS  PubMed  Google Scholar 

  • Mowlick S, Yasukawa H, Inoue T, Takehara T, Kaku N, Ueki K, Ueki A (2013c) Suppression of spinach wilt disease by biological soil disinfestation incorporated with Brassica juncea plants in association with changes in soil bacterial communities. Crop Prot 54:185–193

    Article  Google Scholar 

  • Mowlick S, Inoue T, Takehara T, Tonouchi A, Kaku N, Ueki K, Ueki A (2014) Usefulness of Japanese-radish residue in biological soil disinfestation to suppress spinach wilt disease accompanying with proliferation of soil bacteria in the Firmicutes. Crop Prot 61:64–73

    Article  Google Scholar 

  • Muramoto J, Shennan C, Koike ST, Bolda MP, Daugovish O, Dara SK, Klonsky K, Mazzola M, Zavatta M (2014) Optimizing anaerobic soil disinfestation for California strawberries. In: VIII international symposium chemical and non-chemical soil and substrate disinfestation, vol 1044, Torino, Italy, pp 215–220

    Google Scholar 

  • Nielsen TH, Nielsen LP, Revsbech NP (1996) Nitrification and coupled nitrification-denitrification associated with a soil-manure interface. Soil Sci Soc Am J 60:1829–1840

    Article  CAS  Google Scholar 

  • Núñez-Zofío M, Larregla S, Garbisu C (2011) Application of organic amendments followed by soil plastic mulching reduces the incidence of Phytophthora capsici in pepper crops under temperate climate. Crop Prot 30:1563–1572

    Article  Google Scholar 

  • Nuñez-Zofío M, del Palacio SL, Garbisu C (2012) Repeated biodisinfection controls the incidence of Phytophthora root and crown rot of pepper while improving soil quality. Span J Agric Res 10:794–805

    Article  Google Scholar 

  • Okazaki H, Nose K (1986) Acetic acid and n-butyric acid as causal agents of fungicidal activity of glucose-amended flooded soil. Nihon Shokubutsu Byori Gakkaiho Ann Phytopathol Soc Japan

    Google Scholar 

  • Pace B, Campbell LL (1971) Homology of ribosomal ribonucleic acid of diverse bacterial species with Escherichia coli and Bacillus stearothermophilus. J Bacteriol 107:543–547

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paulitz TC, Bélanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39:103–133

    Article  CAS  PubMed  Google Scholar 

  • Poretsky R, Rodriguez-R LM, Luo C, Tsementzi D, Konstantinidis KT (2014) Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS ONE 9, e93827

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosskopf EN, Burelle NK, Mcsorely R, Skvarch, E (2009) Optimizing alternative fumigant applications for ornamental production in Florida. EDIS. ENY-901 (IN818). Available at http://edis.ifas.ufl.edu/in818

  • Rosskopf EN, Kokalis-Burelle N, Butler D, Muramoto J, Shennan C (2010) Development of anaerobic soil disinfestation for Florida vegetable and flower production. In: Proceedings of annual international research conference on methyl bromide alternatives and emissions reductions, Orlando, pp 15-1/15-2

    Google Scholar 

  • Rosskopf EN, Hong J, Kokalis-Burelle N, Butler D (2012) Status of ASD development in Florida. In: Proceedings of annual international research conference on methyl bromide alternatives and emissions reductions, Orlando, pp 84-1/84-2

    Google Scholar 

  • Rosskopf EN, Burelle N, Hong J, Butler DM, Noling JW, He Z, Booker B, Sances F (2014) Comparison of anaerobic soil disinfestation and drip-applied organic acids for raised-bed specialty crop production in Florida. In: VIII international symposium chemical and non-chemical soil and substrate disinfestation, vol 1044, Torino, Italy, pp 221–228

    Google Scholar 

  • Runia WT, Molendijk LPG, Ludeking DJW, Schomaker CH (2012) Improvement of anaerobic soil disinfestation. Commun Appl Biol Sci 77:753–762, Ghent University

    CAS  Google Scholar 

  • Runia WT, Thoden TC, Molendijk LPG, van den Berg W, Termorshuizen AJ, Stremińska MA, van der Wurff AWG, Feil H, Meints H (2014) Unravelling the mechanism of pathogen inactivation during anaerobic soil disinfestation. In: VIII international symposium chemical and non-chemical soil and substrate disinfestation, vol 1044, Torino, Italy, pp 177–193

    Google Scholar 

  • Rütting T, Boeckx P, Müller C, Klemedtsson L (2011) Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8:1779–1791

    Article  Google Scholar 

  • Schwarzenbach R, Gschwend P, Imboden D (2002) Environmental organic chemistry, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Sexstone AJ, Revsbech NP, Parkin TB, Tiedje JM (1985) Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci Soc Am J 49:645–651

    Article  CAS  Google Scholar 

  • Shennan C, Muramoto J, Koike S, Bolda M, Daugovish O, Mochizuki M, Rosskopf EN, Kokalis-Burelle N, Butler DM (2011) Anaerobic soil disinfestation for suppressing Verticillium dahliae in strawberry production in California. HortSci 46:S174–S175

    Google Scholar 

  • Shennan C, Muramoto J, Fennimore S, Mazzola M, Lazarovits G (2013) Non-fumigant strategies for soilborne disease control in California strawberry production systems. In: Cal strawberry commission annual production research report 2011–2012, pp 145–159

    Google Scholar 

  • Shennan C, Muramoto J, Lamers J, Rosskopf EN, Kokalis-Burelle N, Mazzola M, Momma N, Butler DM, Kobara Y (2014) Anaerobic soil disinfestation for soil borne disease control in strawberry and vegetable systems: current knowledge and future directions. In: VIII international symposium on chemical and non-chemical soil and substrate disinfestation, vol 1044, pp 165–175

    Google Scholar 

  • Shinmura A (2000) Causal agent and control of root rot of welsh onion. PSJ Soilborne Dis Workshop Rep 20:133–143

    Google Scholar 

  • Shinmura A (2004) Principle and effect of soil sterilization method by reducing redox potential of soil. PSJ Soilborne Dis Workshop Rep 22:2–12

    Google Scholar 

  • Shrestha U, Ownley BH, Rosskopf EN, Dee ME, Butler DM (2013) Optimization of amendment C:N ratio in anaerobic soil disinfestation for control of Sclerotium rolfsii. In: Proceedings of annual international research conference on methyl bromide alternatives and emissions reduction, San Diego, CA, pp 14.1–14.3

    Google Scholar 

  • Shrestha U, Bruce A, Ownley BH, Butler DM (2014) Optimizingamendment C:N ratio for Fusarium oxysporum f. sp. lycopersici suppression under Anaerobic Soil Disinfestation. In: Proceedings of annual international research conference on methyl bromide alternatives and emissions reductions, Orlando, pp 53-1/53-3

    Google Scholar 

  • ŠImek M, Cooper JE (2002) The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. Eur J Soil Sci 53:345–354

    Article  Google Scholar 

  • Society of American Bacteriologists (1923) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Stapleton JJ, Summers CG, Mitchell JP, Prather TS (2010) Deleterious activity of cultivated grasses (Poaceae) and residues on soilborne fungal, nematode and weed pests. Phytoparasitica 38:61–69

    Article  Google Scholar 

  • Stevens RJ, Laughlin RJ, Malone JP (1998) Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biol Biochem 30:1119–1126

    Article  CAS  Google Scholar 

  • Stremińska MA, Runia WT, Termorshuizen AJ, Feil H, van der Wurff AWG (2014) Anaerobic soil disinfestation in microcosms of two sandy soils. Commun Agric Appl Biol Sci 79:15–18

    PubMed  Google Scholar 

  • Strong DT, Sale PWG, Helyar KR (1997) Initial soil pH affects the pH at which nitrification ceases due to self-induced acidification of microbial microsites. Soil Res 35:565–570

    Article  Google Scholar 

  • Tenuta M, Conn KL, Lazarovits G (2002) Volatile fatty acids in liquid swine manure can kill microsclerotia of Verticillium dahliae. Phytopathology 92:548–552

    Article  CAS  PubMed  Google Scholar 

  • Thoden TC, Korthals GW, Termorshuizen AJ (2011) Organic amendments and their influences on plant-parasitic and free-living nematodes: a promising method for nematode management? Nematology 13:133–153

    Article  Google Scholar 

  • Uematsu S, Tanaka-Miwa C, Sato R, Kobara Y, Sato M (2007) Ethyl alcohol as a promising material of reductive soil disinfestation for controlling root knot nematode and soilborne plant diseases. In: Proceedings of annual international research conference on methyl bromide alternatives and emissions reductions, San Diego, CA, pp 75-1/75-3

    Google Scholar 

  • van Bruggen A, Blok W (2014) Soil disinfestation and food safety issues. In: VIII international symposium on chemical and non-chemical soil and substrate disinfestation, vol 1044, pp 437–445

    Google Scholar 

  • van Overbeek L, Runia W, Kastelein P, Molendijk L (2014) Anaerobic disinfestation of tare soils contaminated with Ralstonia solanacearum biovar 2 and Globodera pallida. Eur J Plant Pathol 138:323–330

    Article  Google Scholar 

  • Wallace RJ, Falconer ML, Bhargava PK (1989) Toxicity of volatile fatty acids at rumen pH prevents enrichment of Escherichia coli by sorbitol in rumen contents. Curr Microbiol 19:277–281

    Article  CAS  Google Scholar 

  • Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Whitmore AP (1996) Modelling the release and loss of nitrogen after vegetable crops. Neth J Agric Sci 44:73–86

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu JM, Tang C, Chen ZL (2006) The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol Biochem 38:709–719

    Article  CAS  Google Scholar 

  • Yoder AJ (2014) Assessing the impact of biofumigation and anaerobic soil disinfestation on soil biology, nitrogen cycling, crop establishment and yield in vegetable cropping systems. Michigan State University

    Google Scholar 

  • Yossen V, Zumelzu G, Gasoni L, Kobayashi K (2008) Effect of soil reductive sterilisation on Fusarium wilt in greenhouse carnation in Córdoba, Argentina. Austr Plant Pathol 37:520–522

    Article  Google Scholar 

  • Zavatta M, Shennan C, Muramoto J, Mazzola M (2014) Evaluating C-sources for anaerobic soil disinfestation. In: 2014 proceedings of annual international research conference on methyl bromide alternatives and emissions reductions, Orlando, pp 12-1/12-4

    Google Scholar 

  • Zhou A, Takaya N, Nakamura A, Yamaguchi M, Takeo K, Shoun H (2002) Ammonia fermentation, a novel anoxic metabolism of nitrate by fungi. J Biol Chem 277:1892–1896

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Burger M, Doane TA, Horwath WR (2013) Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. PNAS 110:6328–6333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Ariena HC van Bruggen, Yuso Kobara, and Noriaki Momma for the introduction to anaerobic and biological soil disinfestation and to Wesley Schonborn for assistance in manuscript preparation.

Disclaimer

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA. The USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin N. Rosskopf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosskopf, E.N. et al. (2015). Anaerobic Soil Disinfestation and Soilborne Pest Management. In: Meghvansi, M., Varma, A. (eds) Organic Amendments and Soil Suppressiveness in Plant Disease Management. Soil Biology, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-23075-7_13

Download citation

Publish with us

Policies and ethics