Efficient Process Model Discovery Using Maximal Pattern Mining

  • Veronica Liesaputra
  • Sira YongchareonEmail author
  • Sivadon Chaisiri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9253)


In recent years, process mining has become one of the most important and promising areas of research in the field of business process management as it helps businesses understand, analyze, and improve their business processes. In particular, several proposed techniques and algorithms have been proposed to discover and construct process models from workflow execution logs (i.e., event logs). With the existing techniques, mined models can be built based on analyzing the relationship between any two events seen in event logs. Being restricted by that, they can only handle special cases of routing constructs and often produce unsound models that do not cover all of the traces seen in the log. In this paper, we propose a novel technique for process discovery using Maximal Pattern Mining (MPM) where we construct patterns based on the whole sequence of events seen on the traces—ensuring the soundness of the mined models. Our MPM technique can handle loops (of any length), duplicate tasks, non-free choice constructs, and long distance dependencies. Our evaluation shows that it consistently achieves better precision, replay fitness and efficiency than the existing techniques.


Business Process Management Distance Dependency Conformance Check Loop Property Business Process Management System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P.: Process Mining: Overview and Opportunities. ACM Transactions on Management Information Systems 3(2) article 7 (2012)Google Scholar
  2. 2.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Cook, J., Wolf, A.: Discovering models of software processes from event-based data. ACM Transactions on Software Engineering and Methodology 7, 215–249 (1998)CrossRefGoogle Scholar
  4. 4.
    Datta, A.: Automating the discovery of AS-IS business process models: probabilistic and algorithmic approaches. Information Systems Research 9, 275–301 (1998)CrossRefGoogle Scholar
  5. 5.
    Mannila, H., Meek, C.: Global partial orders from sequential data. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2000), pp. 161–168 (2000)Google Scholar
  6. 6.
    Schimm, G.: Process miner - a tool for mining process schemes from event-based data. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 525–528. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Schimm, G.: Mining exact models of concurrent workflows. Computers in Industry 53, 265–281 (2004)CrossRefGoogle Scholar
  8. 8.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering 16, 1128–1142 (2004)CrossRefGoogle Scholar
  9. 9.
    Alves de Medeiros, A.K., van Dongen, B.F., van der Aalst, W.M.P., Weijters, A.J.M.M.: Process Mining: Extending the Alpha-Algorithm to Mine Short Loops. BETA Working Paper Series, vol. 113. TU Eindho- ven (2004)Google Scholar
  10. 10.
    Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with non-free-choice constructs. Data Mining and Knowledge Discovery 15, 145–180 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wen, L., Wang, J., van der Aalst, W.M.P., Huang, B., Sun, J.: A novel approach for process mining based on event types. Journal of Intelligent Information Systems 32, 163–190 (2009)CrossRefGoogle Scholar
  12. 12.
    Weijters, A.J.M.M., van der Aalst, W.M.P., Alves de Medeiros, A.K.: Process Mining with the Heuristics Miner algorithm. BETA Working Paper Series, vol. 166. TU Eindhoven (2006)Google Scholar
  13. 13.
    Günther, C.W., van der Aalst, W.M.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Maruster, L., Weijters, A.J.M.M., van der Aalst, W.M.P., van den Bosch, A.: A rule-based approach for process discovery: dealing with noise and imbalance in process logs. Data Mining and Knowledge Discovery 13, 67–87 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ferreira, H., Ferreira, D.: An integrated life cycle for workflow management based on learning and planning. IJCIS 15, 485–505 (2006)Google Scholar
  16. 16.
    Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative logic-based models from labeled traces. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with artificial negative events. Journal of Machine Learning Research 10, 1305–1340 (2009)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artificial Intelligence 101, 285–297 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Greco, G., Guzzo, A., Pontieri, L., Sacca, D.: Discovering expressive process models by clustering log traces. IEEE Transactions on Knowledge and Data Engineering 18, 1010–1027 (2006)CrossRefGoogle Scholar
  20. 20.
    Greco, G., Guzzo, A., Pontieri, L.: Mining taxonomies of process models. Data & Knowledge Engineering 67, 74–102 (2008)CrossRefGoogle Scholar
  21. 21.
    van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther, C.W.: Process mining: a two-step approach to balance between underfitting and overfitting. Software and System Modeling 9, 87–111 (2010)CrossRefGoogle Scholar
  22. 22.
    Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for deriving bounded Petri nets. IEEE Transactions on Computers 59, 371–384 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Herbst, J., Karagiannis, D.: Workflow mining with InWoLvE. Computers in Industry 53, 245–264 (2004)zbMATHCrossRefGoogle Scholar
  24. 24.
    Folino, F., Greco, G., Guzzo, A., Pontieri, L.: Discovering expressive process models from noised log data. In: Proceedings of the 2009 International Database Engineering & Applications Symposium, pp. 162–172. ACM (2009)Google Scholar
  25. 25.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. Fundamenta Informaticae 94, 387–412 (2009)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Rembert, A.J., Omokpo, A., Mazzoleni, P., Goodwin, R.T.: Process discovery using prior knowledge. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 328–342. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Ferreira, D.R., Gillblad, D.: Discovering process models from unlabelled event logs. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 143–158. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Sole, M., Carmona, J.: Region-Based Folding in Process Discovery. IEEE Transactions on Knowledge and Data Engineering 25(1), 192–205 (2013)CrossRefGoogle Scholar
  29. 29.
    Günther, C.W., Verbeek, E.: XES Standard version 2 (2014).
  30. 30.
    Rozinat, A., de Medeiros, A.K.A., Günther, C.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The need for a process mining evaluation framework in research and practice. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.Y. (eds.) BPM 2007. LNCS, vol. 9428, pp. 84–89. Springer, Heidelberg (2007)Google Scholar
  31. 31.
    Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap representation. In: Proc. 8th ACM Intern. Conf. Knowl. Discov. Data Mining, pp. 429–435. ACM (2002)Google Scholar
  32. 32.
    3TU Data Center, BPI Challenge, Event Log, Scholar
  33. 33.
    Bose, R.P.J.C., van der Aalst, W.M.: Abstractions in process mining: a taxonomy of patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 159–175. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  34. 34.
    Buijs, J.C.A.M., van Dongen, B. F., van der Aalst, W. M. P. : Quality Dimensions in Process Discovery: The importance of Fitness, Precision, Generalization and Simplicit., IJCIS 2(1) (2014)Google Scholar
  35. 35.
    van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying History on Process Models for Conformance Checking and Performance Analysis. WIREs Data Mining and Knowledge Discover 2(2), 182–192 (2012)CrossRefGoogle Scholar
  36. 36.
    Adriansyah, A., Munoz-Game, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.P.: Measuring Precision of Modeled Behaviour. Information systems and e-Business Management (2015)Google Scholar
  37. 37.
    Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm for discovering process trees. In: IEEE Congress on Evolutionary Computation (CEC 2012), pp. 1–8. IEEE Computer Society (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Veronica Liesaputra
    • 1
  • Sira Yongchareon
    • 1
    Email author
  • Sivadon Chaisiri
    • 2
  1. 1.Department of Computing and Information TechnologyUnitec Institute of TechnologyAucklandNew Zealand
  2. 2.Faculty of Computing and Mathematical SciencesUniversity of WaikatoHamiltonNew Zealand

Personalised recommendations