Fast and Accurate Business Process Drift Detection

  • Abderrahmane MaaradjiEmail author
  • Marlon Dumas
  • Marcello La Rosa
  • Alireza Ostovar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9253)


Business processes are prone to continuous and unexpected changes. Process workers may start executing a process differently in order to adjust to changes in workload, season, guidelines or regulations for example. Early detection of business process changes based on their event logs – also known as business process drift detection – enables analysts to identify and act upon changes that may otherwise affect process performance. Previous methods for business process drift detection are based on an exploration of a potentially large feature space and in some cases they require users to manually identify the specific features that characterize the drift. Depending on the explored feature set, these methods may miss certain types of changes. This paper proposes a fully automated and statistically grounded method for detecting process drift. The core idea is to perform statistical tests over the distributions of runs observed in two consecutive time windows. By adaptively sizing the window, the method strikes a trade-off between classification accuracy and drift detection delay. A validation on synthetic and real-life logs shows that the method accurately detects typical change patterns and scales up to the extent that it works for online drift detection.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bose, R.P.J.C., van der Aalst, W.M.P., Žliobaitė, I., Pechenizkiy, M.: Handling concept drift in process mining. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 391–405. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  2. 2.
    Carmona, J., Gavaldà, R.: Online techniques for dealing with concept drift in process mining. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.) IDA 2012. LNCS, vol. 7619, pp. 90–102. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  3. 3.
    Bose, R.J.C., van der Aalst, W.M., Zliobaite, I., Pechenizkiy, M.: Dealing with concept drifts in process mining. IEEE Transactions on NNLS 25(1), 154–171 (2014)Google Scholar
  4. 4.
    Martjušev, J.: Efficient algorithms for discovering concept drift in business processes. Master’s thesis, University of Tartu (2013)Google Scholar
  5. 5.
    Accorsi, R., Stocker, T.: Discovering workflow changes with time-based trace clustering. In: Aberer, K., Damiani, E., Dillon, T. (eds.) SIMPDA 2011. LNBIP, vol. 116, pp. 154–168. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  6. 6.
    Burattin, A., Sperduti, A., van der Aalst, W.M.: Control-flow discovery from event streams. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2420–2427. IEEE (2014)Google Scholar
  7. 7.
    Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Computing Surveys (CSUR) 46(4) (2014)Google Scholar
  8. 8.
    Hidders, J., Dumas, M., van der Aalst, W.M., ter Hofstede, A.H., Verelst, J.: When are two workflows the same? In: Proc. of CATS, pp. 3–11. Australian Computer Society (2005)Google Scholar
  9. 9.
    van Glabbeek, R., Goltz, U.: Equivalence notions for concurrent systems and refinement of actions. In: Kreczmar, A., Mirkowska, M. (eds.) Mathematical Foundations of Computer Science 1989. LNCS, vol. 379, pp. 237–248. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  10. 10.
    van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  11. 11.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE TKDE 16(9), 1128–1142 (2004)zbMATHGoogle Scholar
  12. 12.
    de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, A.J.M.M.T.: Workflow mining: current status and future directions. In: Meersman, R., Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 389–406. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  13. 13.
    Wen, L., van der Aalst, W.M., Wang, J., Sun, J.: Mining process models with non-free-choice constructs. Data Mining and Knowledge Discovery 15(2) (2007)Google Scholar
  14. 14.
    Cook, J.E., Wolf, A.L.: Event-based detection of concurrency. In: Proc. of FSE (1998)Google Scholar
  15. 15.
    Nuzzo, R.: Statistical errors. Nature 506(13), 150–152 (2014)CrossRefGoogle Scholar
  16. 16.
    Ho, S.S.: A martingale framework for concept change detection in time-varying data streams. In: Proc. of ICML, pp. 321–327. ACM (2005)Google Scholar
  17. 17.
    Murphy, J.J.: Technical analysis of the financial markets: A comprehensive guide to trading methods and applications. Penguin (1999)Google Scholar
  18. 18.
    Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: SDM, vol. 7. SIAM (2007)Google Scholar
  19. 19.
    Wilcox, A.R.: Indices of qualitative variation. Technical report, Oak Ridge Nat. Lab (1967)Google Scholar
  20. 20.
    Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process Management. Springer (2013)Google Scholar
  21. 21.
    Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features-enhancing flexibility in process-aware information systems. DKE 66(3), 438–466 (2008)CrossRefGoogle Scholar
  22. 22.
    Yates, D., Moore, D., Starnes, D.S.: The practice of statistics: TI-83/89 Graphing Calculator Enhanced. Macmillan (2007)Google Scholar
  23. 23.
    Armas-Cervantes, A., Baldan, P., Dumas, M., García-Bañuelos, L.: Behavioral comparison of process models based on canonically reduced event structures. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 267–282. Springer, Heidelberg (2014) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Abderrahmane Maaradji
    • 1
    • 3
    Email author
  • Marlon Dumas
    • 2
  • Marcello La Rosa
    • 1
    • 3
  • Alireza Ostovar
    • 3
  1. 1.NICTACanberraAustralia
  2. 2.University of TartuTartuEstonia
  3. 3.Queensland University of TechnologyBrisbaneAustralia

Personalised recommendations