Skip to main content

Cenozoic Orogenic Evolution of the Southern Central Andes (32–36°S)

  • Chapter
  • First Online:

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

This review explores the complex interactions of endogenic and exogenic processes in the segment of the Andes that straddle a transition from the Pampean flat slab to a normal subduction segment (32°–36°S). This segment shows remarkable along-strike variations in topographic uplift, structural elevation, amount and rate of shortening, and crustal root geometry. In the flat-slab segment, high elevations, the development of several tectonic provinces (mountain systems) and the lack of active volcanism characterize the orogen. Deformation and uplift advanced to the east, together with arc-related magmatic activity, sequentially uplifting the Principal Cordillera (20 to ~8 Ma), the Frontal Cordillera (12–5 Ma), the Precordillera (<10 Ma) and the Sierras Pampeanas (<5 Ma). In the normal subduction segment to the south, the Andes are characterized by a decrease in elevation, with a big step in topography at ~35°S and the development of an active magmatic arc straddling the Argentina-Chile border. The Frontal Cordillera is only in the northern part of the normal subduction segment, disappearing at 34°S; only the Principal Cordillera remains south of this latitude. Similarly, deformation progressively advanced to the east, uplifting the Principal Cordillera (20–8 Ma), the Frontal Cordillera (<10 Ma) and the San Rafael basement block (<5 Ma). The amount of shortening systematically decreases from north to south along these two segments, but at the transitional zone between flat and normal subduction zones, there is a sharp decline from ~180 km of shortening (32°S) to ~70 km (33°40′S). South from this latitude, the amount of shortening lineally decreases until it reaches ~30 km at 35°S. Yet, interestingly, the amount of late Miocene surface uplift is opposite to the trend in crustal shortening . These along-strike variations are best explained by boundary conditions of the subduction system related to interplate dynamics controlling the overall pattern of tectonic shortening. However, local variations in mean topographic elevation, deformation styles and crustal root geometry are more likely to be due to upper-plate lithospheric strength variations. These strength variations have governed the coupling degree between brittle upper crust and ductile lower crust deformation. In the flat-slab segment, an initial thick and felsic crust favors the coupling model; while in the normal subduction segment, a thin and mafic lower crust allows the uncoupling model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguirre-Urreta B, Tunik M, Naipauer M, Pazos P, Ottone G, Fanning M, Ramos VA (2011) Malargüe Group (Maastrichtian–Danian) deposits in the Neuquén Andes, Argentina: implications for the onset of the first Atlantic transgression related to Western Gondwana break-up. Gondwana Res 19:482–494

    Article  Google Scholar 

  • Ahumada EA, Costa CH (2009) Antithetic linkage between oblique Quaternary thrusts at the Andean front, Argentine Precordillera. J South Am Earth Sci 28:207–216

    Article  Google Scholar 

  • Allmendinger RW, Figueroa D, Snyder D, Beer J, Mpodozis C, Isacks BL (1990) Foreland shortening and crustal balancing in the Andes at 30°S latitude. Tectonics 9:789–809

    Article  Google Scholar 

  • Alvarado P, Beck S, Zandt G, Araujo M, Triep E (2005) Crustal deformation in the south-central Andes back-arc terranes as viewed from regional broad-band seismic wave form modelling. Geophys J Int. doi:10.111/j.1365-246X.2005.02759

    Google Scholar 

  • Alvarado P, Beck S, Zandt G (2007) Crustal structure of the south-central Andes Cordillera and backarc region from regional wave form modeling. Geophys J Int 121:858–875

    Article  Google Scholar 

  • Álvarez PP, Godoy E, Aguirre-Urreta MB (1996) Jurásico marino de la Alta Cordillera de Chile Central, Región Metropolitana. In: XIII Congreso Geológico Argentino (Buenos Aires), Actas 5:181

    Google Scholar 

  • Anderson M, Alvarado P, Zandt G, Beck S (2007) Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina. Geophys J Int 171(1):419–434

    Article  Google Scholar 

  • Araneda M, Avendaño M, Merlo C (2000) Modelo gravimétrico de la cuenca de Santiago, etapa III final. In: IX Congreso Geológico DE Chile (Puerto Varas) 404–408

    Google Scholar 

  • Arcila Gallego PA (2010) Los depósitos sinorogénicos del sur de Mendoza y su relación con la faja plegada y corrida de Malargüe (35°–36°S), Mendoza. Argentina. Unpubl. Ph.D. thesis. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, p 379

    Google Scholar 

  • Armijo R, Rauld R, Thiele R (2010) The West Andean Thrust, the San Ramón Fault, and the seismic hazard for Santiago, Chile. Tectonics 29: TC2007 doi:10.1029/2008TC002427

    Google Scholar 

  • Arriagada C, Ferrando R, Córdova L, Morata D, Roperch P (2013) The Maipo Orocline: a first scale structural feature in the Miocene to Recent geodynamic evolution in the central Chilean Andes. Andean Geol 40:419–437

    Google Scholar 

  • Astini RA, Benedetto JL, Vaccari NE (1995) The early Palaeozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted and collided terrane: a geodynamic model. Geol Soc Am Bulletin 107:253–273

    Article  Google Scholar 

  • Azcuy CL, Caminos R (1987) Diastrofismo. In: Archangelsky S (ed) El Sistema Carbonífero en la República Argentina. Cordoba, Academia Nacional de Ciencias, pp 239–251

    Google Scholar 

  • Baldauf PE (1997) Timing of the uplift of the Cordillera Principal, Mendoza Province, Argentina. Unpubl. Ph.D. thesis, George Washington University: p 356

    Google Scholar 

  • Barazangi M, Isacks BL (1976) Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4:686–692

    Article  Google Scholar 

  • Barrientos S, Vera E, Alvarado P, Monfret T (2004) Crustal seismicity in central Chile. J S Am Earth Sci 16:759–768

    Article  Google Scholar 

  • Bastías H, Tello GE, Perucca LP, Paredes JD (1993) Peligro sísmico y neotectónica. In: Ramos VA (ed) Geología y recursos naturales de la provincia de Mendoza. Relatorio XII Congreso Geológico Argentino 6(1):645–658

    Google Scholar 

  • Bechis F, Giambiagi L, García V, Lanés S, Cristallini E, Tunik M (2010) Kinematic analysis of a transtensional fault system: the Atuel depocenter of the Neuquén Basin, Southern Central Andes, Argentina. J Struct Geol 32:886–899

    Article  Google Scholar 

  • Bechis F, Cristallini E, Giambiagi L, Yagupsky D, Guzmán C, García V (2014) Transtensional tectonics induced by oblique reactivation of previous lithospheric anisotropies during the Late Triassic to Early Jurassic rifting in the Neuquén basin: insights from analog models. J Geodyn 79:1–17

    Article  Google Scholar 

  • Bermúdez A, Delpino D, Frey F, Saal A (1993) Los basaltos de retroarco extrandinos. In: Ramos VA (ed) Geología y recursos naturales de Mendoza. Relatorio XII Congreso Geológico Argentino y II Congreso de Exploració de Hidrocarburos 161–172

    Google Scholar 

  • Bertotto GV, Cingolani CA, Bjerg EA (2009) Geochemical variations in Cenozoic back-arc basalts at the border of La Pampa and Mendoza provinces, Argentina. J S Am Earth Sci 28:360–373

    Article  Google Scholar 

  • Brüggen J (1950) Fundamentos de la Geología de Chile. Instituto Geográfico Militar, Santiago 374

    Google Scholar 

  • Buelow EK, Suriano J, Mahoney B, Mescua JF, Giambiagi LB, Kimbrough DL (2014) Stratigraphic analysis of the neogene Cacheuta Basin: a record of orogenic exhumation and basin inversión in the South Central Andes. Geol Soc Am Ann Meet 1

    Google Scholar 

  • Burd A, Booker JR, Pomposiello MC Favetto A, Larsen J, Giordanengo G, Bernal LO (2008) Electrical conductivity beneath the Payún Matrú volcanic field in the Andean back-arc of Argentina near 36.5°S: insights into the magma source. In: VII International Symposium of Andean Geodynamics (Nice), pp 90–93

    Google Scholar 

  • Burd AI, Booker JR, Mackie R, Favetto A, Pomposiello MC (2014) Three-dimensional electrical conductivity in the mantle beneath the Payún Matrú Volcanic Field in the Andean backarc of Argentina near 36.5° S: evidence for decapitation of a mantle plume by resurgent upper mantle shear during slab steepening. Geophys J Int 198(2):812–827

    Google Scholar 

  • Cahill T, Isacks BL (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97:17503–17529

    Article  Google Scholar 

  • Caminos R (1965) Geología de la vertiente oriental del Cordón del Plata, Cordillera Frontal de Mendoza. Rev Asoc Geol Argentina 20(3):351–392

    Google Scholar 

  • Casa A, Cortéz JM, Borgnia M (2010) Evidencias de deformación pleistocena en el sistema de fallas de La Carrera (32°40′–33°15′S), Cordillera Frontal de Mendoza. Rev Asoc Geol Argentina 67:91–104

    Google Scholar 

  • Cecioni G (1980) Darwin’s Navidad embayment, Santiago region, Chile, as a model of the southeastern Pacific shelf. J Petrol Geol 2–3:309–321

    Article  Google Scholar 

  • Cegarra M, Ramos VA (1996) La faja plegada y corrida del Aconcagua. In: Ramos VA (ed) Geología de la Región del Aconcagua, Dirección Nacional del Servicio Geológico, Buenos Aires, Anales 24:386–422

    Google Scholar 

  • Cerdeño E, Vucetich MG (2007) The first rodent from the Marino Formation (Miocene) at Divisadero Largo (Mendoza Argentina) and its biochronological implications. Rev Geol Chile 34:199–207

    Article  Google Scholar 

  • Charrier R (1979) El Triásico de Chile y regiones adyacentes en Argentina: una reconstrucción paleogeográfica y paleoclimática. Comunicaciones 26:1–47

    Google Scholar 

  • Charrier R, Wyss A, Flynn J, Swisher C, Norell M, Zapatta F, McKenna M, Novacek M (1996) New evidence for Late Mesozoic-Early Cenozoic evolution of the Chilean Andes in the Upper Tinguiririca Valley (35°S), Central Chile. J South Am Earth Sci 9:393–422

    Article  Google Scholar 

  • Charrier R, Baeza O, Elgueta S, Flynn J, Gans P, Kay SM, Muñoz N, Wyss A, Zurita E (2002) Evidence for Cenozoic extensional basin development and tectonic in- version south of the flat-slab segment, southern Central Andes, Chile (33°–36°S.L.). J South Am Earth Sci 15:117–139

    Article  Google Scholar 

  • Charrier R, Bustamante M, Comte D, Elgueta S, Flynn JJ, Iturra N, Muñoz N, Pardo M, Thiele R, Wyss AR (2005) The Abanico Extensional Basin: regional extension, chronology of tectonic inversion and relation to shallow seismic activity and Andean uplift. Neues Jb Geol Paläontol Abh 236:43–77

    Google Scholar 

  • Charrier R, Farías M, Maksaev V (2009) Evolución tectónica, paleogeográfica y metalogénica durante el Cenozoico en los Andes de Chile norte y central e implicaciones para las regiones adyacentes de Bolivia y Argentina. Rev Asoc Geol Argentina 65:5–35

    Google Scholar 

  • Cisneros H, Bastias H (1993) Neotectónica del borde oriental del Bloque de San Rafael. In: XII Congreso Geológico Argentino (Mendoza), 270–276

    Google Scholar 

  • Combina A, Nullo F (2008) El ‘diacronismo’ de la Formación Agua de la Piedra (Terciario, Mendoza). In: XVII Congreso Geológico Argentino (San Salvador de Jujuy), Actas 1:87–88

    Google Scholar 

  • Cortés JM (1993) El frente de corrimiento de la Cordillera Frontal y el extremo sur del valle de Uspallata, Mendoza. In: XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos (Mendoza), Actas 3:168–178

    Google Scholar 

  • Cortés JM, Cegarra M (2004) Plegamiento cuaternario transpresivo en el piedemonte suroccidental de la Precordillera sanjuanina. Rev Asoc Geol Argentina, Special Publication 7:68–75

    Google Scholar 

  • Cortés JM, González Bonorino G, Koukharsky M, Pereyra F, Brodtkorb A (1997) Hoja geológica 3369–09, Uspallata, Mendoza. Servicio Geologico Minero Nacional, p 142

    Google Scholar 

  • Cortés JM, Vinciguerra P, Yamín M, Pasini MM (1999) Tectónica cuaternaria de la region andina del Nuevo Cuyo (28°–38°LS). In: Caminos R (ed) Geología Argentina, Segemar Anales 29:760–778

    Google Scholar 

  • Cortés JM, Casa A, Pasini M, Yamin M, Terrizzano C (2006) Fajas oblicuas de deformación neotectónica en precordillera y Cordillera Frontal (31°30′–33°30′LS). Controles paleotectónicos. Rev Asoc Geol Argentina 61:639–646

    Google Scholar 

  • Cortés JM, Terrizzano C, Pasini, M (2015) Quaternary tectonics along oblique deformation zones in the Central Andean retro-wedge between 31°30′ and 35°S. In: Sepúlveda S, Giambiagi L, Moreiras SM, Pinto L, Tunik M, Hoke G, Farías M (eds) Geodynamic Processes in the Andes of Central Chile and Argentina. Geol Soc London, Special Publication 399:267–291

    Google Scholar 

  • Costa C, Vita-Finzi C (1996) Late Holocene faulting in the southeast Sierras Pampeanas of Argentina. Geology 24:1127–1130

    Article  Google Scholar 

  • Costa C, Giaccardi A, González Díaz E (1999) Palaeolandsurfaces and neotectonic anaylsis in the southern Sierras Pampeanas, Argentina. In: Smith B, Whalley W, Warke P (eds) Uplift, Erosion and Stability: Perspectives on longterm Landscape Development. Geol Soc London, Special Publication 162:229–238

    Google Scholar 

  • Costa C, Gardini C, Diederix H, Cortés JM (2000) The Andean orogenic front at sierra de las Peñas-Las Higueras, Mendoza, Argentina. J S Am Earth Sci 13:287–292

    Article  Google Scholar 

  • Costa C, Murillo M, Sagripanti G, Gardini C (2001) Quaternary intraplate deformation in the southern Sierras Pampeanas, Argentina. J Seismol 5:399–409

    Article  Google Scholar 

  • Cristallini EO (1996a) La faja plegada y corrida de la Ramada. In: Ramos VA (ed) Geología de la región del Aconcagua. Provincias de San Juan y Mendoza. Dirección Nacional del Servicio Geológico, Anales 24(13):349–385

    Google Scholar 

  • Cristallini EO (1996b) Plegamiento por despegue en la Alta cordillera de San Juan a los 32°S, Argentina. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos (Mendoza), Actas 2:325–336

    Google Scholar 

  • Cristallini E, Cangini A (1993) Estratigrafia y estructura de las nacientes del rio Volcan, Alta Cordillera de San Juan. XII Congreso Geológico Argentino, II Congreso de Exploración de Hidrocarburos (Mendoza). Actas 3:85–92

    Google Scholar 

  • Cristallini E, Ramos VA (2000) Thick-skinned and thin-skinned thrusting in La Ramada Fold and Thrust belt: crustal evolution of the High Andes of San juan, Argentina (32°SL). Tectonophys 317:205–235

    Article  Google Scholar 

  • Cristallini E, Mosquera A, Ramos VA (1995) Estructura de la Alta Cordillera de San Juan. Rev Asoc Geol Argentina 49(1–2):165–183

    Google Scholar 

  • Davidson J (1971) Contribución al estudio geológico de los Andes Meridionales Centrales: Geología del área de las Nacientes del Teno, Provincia de Curicó. Unpubl Memoria de Título Universidad de Chile, p 145

    Google Scholar 

  • Davis DM, Suppe J, Dahlen FA (1983) Mechanics of fold-and-thrust belts and accretionary wedges. J Geophys Res 88:1153–1172

    Article  Google Scholar 

  • Davis JS, Roeske SM, McClelland WC, Kay SM (2000) Mafic and ultramafic crustal fragments of the southwestern Precordillera terrane and their bearing on tectonic models of the early Paleozoic in western Argentina. Geology 28:171–174

    Article  Google Scholar 

  • Dellapé D, Hegedus A (1995) Structural inversion and oil occurrence in the Cuyo basin of Argentina. Petroleum Basins of South America. In: Tankard A, Suárez R, Welsink H (eds) Am Assoc Petrol Geol Bulletin 62:369–367

    Google Scholar 

  • Dicarlo DJ, Cristallini E (2007) Estructura de la margen norte del Río Grande, Bardas Blancas, provincia de Mendoza. Rev Asoc Geol Argentima 62(2):187–199

    Google Scholar 

  • Dimieri L (1997) Tectonic wedge geometry at Bardas Blancas, southern Andes (36°S). Argentina. J Struct Geol 19(11):1419–1422

    Article  Google Scholar 

  • Elgueta S, Charrier R,Thiele R (1999) Volcanogenic sedimentation model for the Miocene Farellones Formation, Andean Cordillera, Central Chile. In: IV International Symposium of Andean Geodynamics (Göttingen), Germany, pp 228–231

    Google Scholar 

  • Encinas A, Le Roux JP, Buatois LA, Nielsen SN, Finger KL, Fourtanier E, Lavenu A (2006) Nuevo esquema estratigráfico para los depósitos marinos mio-pliocenos del área de Navidad (33°–34°S). Chile central. Rev Geol Chile 33(2):221–246

    Google Scholar 

  • Encinas A, Finger KL, Nielsen SN, Lavenu A, Buatois LA, Peterson D, Le Roux JP (2008) Rapid and major coastal subsidence during the lateMiocene in south central Chile. J S Am Earth Sci 25:157–175

    Article  Google Scholar 

  • Farías M, Charrier R, Carretier S, Martinod J, Fock A, Campbell D, Cáceres J, Comte D (2008) Late Miocene high and rapid surface uplift and its erosional response in the Andes of central Chile (33°–35°S). Tectonics. doi:10.1029/2006TC002046

    Google Scholar 

  • Farías M, Vargas G, Tassara A, Carretier S, Baize S, Melnick D, Bataille K (2010) Land-Level changes produced by the Mw 8.8 2010 Chilean earthquake. Science. doi:10.1126/science.1192094

    Google Scholar 

  • Fock A (2005) Cronología y tectónica de la exhumación en el Neógeno de los Andes de Chile central entre los 33° y los 34° S, Tésis para optar al grado de Magíster en Ciencias, Mención Geología, Memoria para optar al título de Geólogo, Departamento de Geología, Universidad de Chile, Santiago, pp179

    Google Scholar 

  • Fock A, Charrier R, Farías M, Muñoz M (2006) Fallas de vergencia Oeste en la Cordillera Principal de Chile Central: Inversión de la cuenca de Abanico (33°–34°S). Rev Asoc Geol Argentina, Special Publication 10:48–55

    Google Scholar 

  • Folguera A, Ramos VA (2011) Repeated eastward shifts of arc magmatism in the southern Andes: a revision to the long-term pattern of Andean uplift and magmatism in the southern Andes. J S Am Earth Sci 32(4):530–545

    Google Scholar 

  • Folguera A, Zárate M (2009) La sedimentación neógena continental en el sector extrandino de Argentina central. Rev Asoc Geol Argentina 64(4):692–712

    Google Scholar 

  • Folguera A, Zárate M (2011) Neogene sedimentation in the Argentine foreland between 34°30′S and 41°S and its relation to the Andes evolution. In: Salfity, JA, Marquillas R A (eds) Cenozoic geology of the Central Andes of Argentina: Salta, SCS Publisher, p 123–134

    Google Scholar 

  • Folguera A, Etcheverría M, Pazos P, Giambiagi LB, Cortés JM, Fauqué L, Fusari C, Rodríguez MF (2004) Descripción de la Hoja Geológica Potrerillos (1:100.000). Subsecretaría de Minería de la Nación, Dirección Nacional del Servicio Geológico, p 262

    Google Scholar 

  • Folguera A, Naranjo JA, Orihashi Y et al (2009) Retroarc volcanism in the northern San Rafael block (34°–35°30′S), southern Central Andes: occurrence, age, and tectonic setting. J Volcanol Geotherm Res 186:169–185

    Article  Google Scholar 

  • García VH, Casa AL (2015). Quaternary tectonics and seismic potencial of the Andean retrowedge at 33°–34°S. In: Sepúlveda SA, Giambiagi LB, Moreiras SM, Pinto L, Tunik M, Hoke GD, Farías M (eds) Geodynamic Processes in the Andes of Central Chile and Argenti na. Geol Soc London, Special Publication 399:311–327

    Google Scholar 

  • Germa A, Quidelleur X, Gillot PY, Tchilinguirian P (2010) Volcanic evolution of the backarc Pleistocene Payun Matru Volcanic Field (Argentina). J S Am Earth Sci 29(3):717–730

    Article  Google Scholar 

  • Giambiagi LB, Ramos VA (2002) Structural evolution of the Andes in a transitional zone between flat and normal subduction (33°30′–33°45′S), Argentina and Chile. J South Am Earth Sci 15(1):101–116

    Article  Google Scholar 

  • Giambiagi L, Martinez AN (2008) Permo-Triassic oblique extension in the Potrerillos-Uspallata area, western Argentina. J S Am Earth Sci 26:252–260

    Article  Google Scholar 

  • Giambiagi LB, Tunik MA, Ghiglione M (2001) Cenozoic tectonic evolution of the Alto Tunuyán foreland basin above the transition zone between the flat and normal subduction segment (33°30′–34°S), western Argentina. J South Am Earth Sci 14:707–724

    Article  Google Scholar 

  • Giambiagi L, Ramos V, Godoy E, Alvarez PP, Orts S (2003) Cenozoic deformation and tectonic style of the Andes, between 33° and 34° south latitude. Tectonics 22(4):15–18

    Article  Google Scholar 

  • Giambiagi L, Bechis F, García V, Clark AH (2008) Temporal and spatial relationship between thick- and thin-skinned deformation in the Malargüe fold and thrust belt, southern Central Andes. Tectonophys 459:123–139

    Article  Google Scholar 

  • Giambiagi L, Ghiglione M, Cristallini E, Bottesi G (2009) Kinematic models of basement/cover interactions: insights from the Malargüe fold and thrust belt, Mendoza, Argentina. J Struct Geol 31:1443–1457

    Article  Google Scholar 

  • Giambiagi L, Mescua J, Bechis F, Martínez A, Folguera A (2011) Pre-Andean deformation of the Precordillera southern sector, Southern Central Andes. Geosphere 7(1):1–21

    Article  Google Scholar 

  • Giambiagi L, Mescua JF, Bechis F, Tassara A, Hoke G (2012) Thrust belts of the Southern Central Andes: along strike variations in shortening, topography, crustal geometry and denudation. Geol Soc Am Bull 124(7–8):1339–1351

    Article  Google Scholar 

  • Giambiagi L, Mescua J, Heredia N, Farías P, García Sansegundo J, Fernández C, Stier S, Pérez D, Bechis F, Moreiras SM, Lossada A (2014) Reactivation of Paleozoic structures during Cenozoic deformation in the Cordón del Plata and Southern Precordillera ranges (Mendoza, Argentina). J Iber Geol 40(2):309–320

    Article  Google Scholar 

  • Giambiagi L, Tassara A, Mescua J, Tunik M, Alvarez PP, Godoy E, Hoke G, Pinto L, Spagnotto S, Porras H, Tapia F, Jara P, Bechis F, García VH, Suriano J, Pagano SD (2015) Evolution of shallow and deep structures along the Maipo-Tunuyán transect (33°40′S): from the Pacific coast to the Andean foreland. In Sepúlveda S, Giambiagi L, Pinto L, Moreiras S, Tunik M, Hoke G, Farías M (eds) Geodynamic Processes in the Andes of Central Chile and Argentina. Geol Soc London, Special Publications 399:63–82

    Google Scholar 

  • Godoy E (1991) El Corrimiento del Fierro reemplaza a la discordancia intrasenoniana en el rio Cachapoal, Chile Central. In: VI Congreso Geológico de Chile (Viña del Mar), pp. 635–639

    Google Scholar 

  • Godoy E, Lara L (1994) Segmentación estructural andina a los 33°–34°: nuevos datos en la Cordillera Principal. In: Proceedings VII Congreso Geológico Chile (Concepción), pp. 1344–1348

    Google Scholar 

  • Godoy E, Yanez G, Vera E (1999) Inversion of an Oligocene volcano-tectonic basin and uplifting of its superimposed Miocene magmatic arc in the Chilean Central Andes: first seismic and gravity evidences. Tectonophys 306(2):217–336

    Article  Google Scholar 

  • Godoy E, Schilling M, Solari M, Fock A (2009) Carta Rancagua. Escala 1:100.000: Santiago, Servicio Nacional de Geología y Minería. Serie Geología Básica n° 118:50

    Google Scholar 

  • González Díaz EF (1964) Rasgos geológicos y evolución geomorfológica de la Hoja 27d (San Rafael) y zona occidental vecina (Provincia de Mendoza). Rev Asoc Geol Argentina 19:151–188

    Google Scholar 

  • Gutiérrez N, Hinojosa L, Le Roux JP, Pedroza V (2013) Evidence for an Early-Middle Miocene age of the Navidad Formation (central Chile): Paleontological, paleoclimatic and tectonic implications. Andean Geol 40(1):1–26

    Google Scholar 

  • Heredia N, Farias P, García-Sansegundo J, Giambiagi L (2012) The basement of the Andean Frontal Cordillera in the Cordón del Plata (Mendoza, Argentina): Geodynamic evolution. Andean Geol 39(2):242–257

    Google Scholar 

  • Hervé F, Munizaga F, Parada MA, Brook M, Pankhurst R, Snelling NJ, Drake R (1988) Granitoids of the Coastal Range of central Chile: geochronology and geologic setting. J South Am Earth Sci 1:185–194

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Hoke GD, Giambiagi L, Garzione CN, Mahoney B, Strecker M (2014) Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina. Earth Planet Sci Lett 406:153–164

    Article  Google Scholar 

  • Hoke G, Graber NR, Mescua JF, Giambiagi L, Fitzgerald P, Metcalf J (2015) Near pure surface uplift of the Argentine Frontal Cordillera: insights from (U–Th)/He thermochronometry and geomorphic analysis. In: Sepúlveda S, Giambiagi L, Pinto L, Moreiras S, Tunik M, Hoke G, Farías M (eds) Geodynamic Processes in the Andes of Central Chile and Argentina. Geol Soc London, Special Publications 399:383–399

    Google Scholar 

  • Ibaraki M (1992) Geologic age of biosiliceous sediments in Perú and Chile based upon planktonic foraminifera. Revista Geológica de Chile 19(1):61–66

    Google Scholar 

  • INPRES (1985) El terremoto de Mendoza, Argentina del 26 de enero de 1985, Informe general, San Juan: p 137

    Google Scholar 

  • INPRES (2005) Listado de sismos históricos de Argentina. On-line

    Google Scholar 

  • Irigoyen MV, Buchan KL, Brown RL (2000) Magnetostratigraphy of Neogene Andean foreland-basin strata, lat. 33°S, Mendoza Province Argentina. Geol Soc Am Bull 112:803–816

    Article  Google Scholar 

  • Iverson O, Mahoney JB, Giambiagi L, Benusa KM, Kimbrough D (2012) Neogene basin evolution in the Las Peñas basin, Salagasta Region, Mendoza, Argentina. Rocky Mountain Geol Soc Am Meeting. https://gsa.confex.com/gsa/2012RM/finalprogram/abstract_203729.htm

  • Japas MS, Kleiman LE (2004) El ciclo Choiyoi en el bloque de San Rafael (Mendoza): de la orogénesis tardía a la relajación mecánica. Rev Asoc Geol Argentina 7:89–100

    Google Scholar 

  • Japas MS, Cortés JM, Pasini M (2008) Tectónica extensional triásica en el sector norte de la cuenca Cuyana, Precordillera Sur: Primeros datos cinemáticos. Rev Asoc Geol Argentina 63:213–222

    Google Scholar 

  • Jara P, Charrier R (2014) Nuevos antecedents estratigráficos y geocronológicos para el Meso-Cenozoico de la cordillera Principal de Chile entre 32° y 32°30′S: Implicancias estructurales y paleogeográficas. Andean Geol 41(1):174–209

    Google Scholar 

  • Jordan TE, Isacks BL, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca plate. Geol Soc Am Bull 94:341–361

    Article  Google Scholar 

  • Jordan T, Tamm V, Figueroa G, Flemmings PB, Richards D, Tabutt K, Cheatham T (1996) Development of the Miocene Manantiales foreland basin, Principal Cordillera, San Juan. Argentina. Rev Geol Chile 23(1):43–80

    Google Scholar 

  • Kay SM, Abbruzzi JM (1996) Magmatic evidence for Neogene lithospheric evolution of the central Andean “flat-slab” between 30°S and 32°S. Tectonophys 259:15–28

    Google Scholar 

  • Kay S M, Kurtz A (1995) Magmatic and tectonic characterization of the EI Teniente Region, internal report, Corp Nac Cobre, Santiago, Chile, p 80

    Google Scholar 

  • Kay S, Mpodozis C, Ramos VA, Munizaga F (1991) Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28° to 33°S). In: Harmon, RS, Rapela CW (eds) Andean Magmatism and its Tectonic Setting, Geol Soc of America, Special Paper 265:113–137

    Google Scholar 

  • Kay SM, Godoy E, Kurtz A (2005) Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south central Andes. Geol Soc Am Bull 117:67–88

    Article  Google Scholar 

  • Kay SM, Burns M, Copeland P (2006) Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. In: Kay S M, Ramos VA (eds) Evolution of An Andean Margin: A Tectonic and Magmatic View From the Andes to the Neuquén Basin (35°–39°S). Geol Soc America, Special Paper 407:19–60

    Google Scholar 

  • Kleiman LE, Japas MS (2009) The Choiyoi volcanic province at 34°–36°S (San Rafael, Mendoza, Argentina): Implications for the Late Paleozoic evolution of the southwestern margin of Gondwana. Tectonophys 473:283–299

    Article  Google Scholar 

  • Kontak DJ, Clark AH, Farrar E, Strong DF (1985) The rift-associated Permo-triassic magmatism of the Eastern Cordillera: a precursor to the Andean orogeny. In: Pitcher WS, Atherton MP, Cobbing EJ, Beckinsale RD (eds) Magmatism at a plate edge-The Peruvian Andes. Wiley, New York, pp 36–44

    Chapter  Google Scholar 

  • Kozlowski E, Manceda R, Ramos VA (1993) Estructura. In: Ramos V A (ed) Geología y Recursos Naturales de Mendoza. Relatorio del XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos (Mendoza), 235–256

    Google Scholar 

  • Kurtz A, Kay SM, Charrier R, Farrar E (1997) Geochronology of Miocene plutons and exhumation history of the El Teniente region, Central Chile (34°–35°S). Rev Geol Chile 24(1):75–90

    Google Scholar 

  • Lamb S, Davies P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792–797

    Article  Google Scholar 

  • Legarreta L, Uliana MA (1996) The Jurassic succession in west-central Argentina: stratal patterns, sequences and paleogeographic evolution. Palaeogeo Palaeocli Paleoec 20:303–330

    Article  Google Scholar 

  • Legarreta L, Kokogian DA, Dellapé DA (1992) Estructuración terciaria de la Cuenca Cuyana: ¿Cuánto de inversión tectónica? Rev Asoc Geol Argentina 47(1):83–86

    Google Scholar 

  • Llambías EJ, Sato AM (1990) EI batolito de Colanguil (29°-31°S) Cordillera Frontal Argentina: estructura y marco tectonico. Rev Geol Chile 17:89–108

    Google Scholar 

  • Llambías EJ, Kleiman LE, Salvarredi JA (1993) Magmatismo gondwánico de Mendoza. In: Ramos VA (ed) Geología y Recursos Naturales de Mendoza. Relatorio XII Congreso Geológico Argentino, 53–64

    Google Scholar 

  • Mahoney JB, Kimbrough DL, Hoke GD, Mescua JF, Giambiagi LB, Buelow EK, Hutter A, Leidel A (2014) Cuenca Uspallata: an intermontane basin records episodic uplift of the Cordillera Frontal and Precordillera in the Late Miocene, Geol Soc Am Annual Meeting, 143–148

    Google Scholar 

  • Maksaev V, Munizaga F, Zentilli M, Charrier R (2009) Fission track thermochronology of Neogene plutons in the Principal Andean Cordillera of central Chile (33–35°S): Implications for tectonic evolution and porphyry Cu-Mo mineralization. Andean Geol 36(2):153–171

    Google Scholar 

  • Manceda R, Figueroa D (1995) Inversion of the Mesozoic Neuquén rift in the Malargüe fold and thrust belt, Mendoza, Argentina. In: Tankard AJ, Suárez R, Welsink HJ (eds) Petroleum basins of South America, Memoir 62. Am Assoc Petrol Geol Bull, 369–382

    Google Scholar 

  • Massone HJ, Calderón M (2008) P-T evolution of metapelites from the Guarguaraz Complex, Argentina: evidence for Devonian crustal thickening close to the western Gondwana margin. Rev Geol Chile 35(2):215–231

    Google Scholar 

  • Melchor R, Casadío S (2000) Hoja Geológica 3766-I, Santa Isabel. Servicio Geológico Minero Nacional, Boletín 344:43

    Google Scholar 

  • Mescua JF, Giambiagi LB (2012) Fault inversion vs. new thrust generation: a case study in the Malargüe fold-and-thrust belt Andes of Argentina. J Struct Geol 35:51–63

    Article  Google Scholar 

  • Mescua J, Giambiagi L, Ramos VA (2013) Late Cretaceous Uplift in the Malargüe fold-and-thrust belt (35°S), southern Central Andes of Argentina and Chile. Andean Geol 40(1):102–116

    Google Scholar 

  • Mescua JF, Giambiagi LB, Tassara A, Gimenez M, Ramos VA (2014) Influence of pre-Andean history over Cenozoic foreland deformation: Structural styles in the Malargüe fold-and-thrust belt at 35°S Andes of Argentina. Geosphere 10(3):585–609

    Article  Google Scholar 

  • Molnar P, Freedman D, Shih JS (1979) Lengths of intermediate and deep seismic zones and temperatures in downgoing slabs of lithosphere. Geophys J Royal Astronom Soc 56:41–54

    Article  Google Scholar 

  • Mordojovich C (1981) Sedimentary basins of Chilean Pacific Offshore. In: Halbouty MT (ed) Energy resources of the Pacific Region. Asoc Argent Petrol Gas, Stud Geol, 63–82

    Google Scholar 

  • Moreiras SM, Giambiagi LB, Spagnotto S, Nacif S, Mescua J, Toural R (2014) El frente orogénico activo de los Andes centrales a la latitud de la ciudad de Mendoza (32°50S–33°S). Andean Geol 41(2):261–342

    Google Scholar 

  • Mpodozis C, Cornejo P (2012) Cenozoic Tectonics and Porphyry Copper Systems of the Chilean Andes. Geology and genesis of major copper deposits and districts of the world: a tribute to Richard H. Sillitoe. Soc Econ Geol, Boulder, 329–360

    Google Scholar 

  • Mpodozis C, Kay SM (1990) Provincias magmáticas ácidas y evolución tectónica de Gondwana. Andes Chilenos, 28°–31°S. Rev Geol Chile 17(2):153–180

    Google Scholar 

  • Mpodozis C, Ramos VA (1989) The Andes of Chile and Argentina. In: Ericksen GE, Cañas Pinochet MT, Rieinemud JA (eds) Geology of the Andes and its Relation to Hydrocarbon and Mineral Resources. Circumpacific Council for Energy and Mineral Resources, Earth Science Series, 11:59–90

    Google Scholar 

  • Muñoz M, Fuentes F, Vergara M, Aguirre L, Nyström JO, Féraud G, Demant A (2006) Abanico East Formation: petrology and geochemistry of volcanic rocks behind the Cenozoic arc front in the Andean Cordillera, central Chile (33°50′S). Rev Geol Chile 33:109–140

    Article  Google Scholar 

  • Muñoz M, Charrier R, Fanning CM, Maksaev V, Deckart K (2012) Zircon trace element and O-Hf isotope analyses of mineralized intrusions from El Teniente Ore Deposit, Chilean Andes: Constraints on the source and magmatic evolution of porphyry Cu-Mo related magmas. J Petrol 53:1091–1122

    Article  Google Scholar 

  • Nullo F, Stephens GC, Otamendi J, Baldauf PE (2002) El volcanismo terciario del sur de Mendoza. Rev Asoc Geol Argentina 57(2):119–132

    Google Scholar 

  • Nyström JO, Parada MA, Vergara M (1993) Sr- Nd isotope composition of Cretaceous to Miocene volcanic rocks in central Chile: A trend towards a MORB signature and a reversal with time. II Int Symp Andean Geodynamics, París, pp 411–414

    Google Scholar 

  • Nyström JO, Vergara M, Morata D (2003) Tertiary volcanism during extension in the Andean foothills of central Chile (33°15′–33°45′S). Geol Soc Am Bull 115:1523–1537

    Article  Google Scholar 

  • Oncken O, Hindle D, Kley J, Elger K, Victor P, Schemmann K (2006) Deformation of the central Andean upper plate system: Facts, fiction, and constraints for plateau models. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes: Active Subduction Orogeny, Frontiers Earth Sci, Springer, Berlin, 21:3–27

    Google Scholar 

  • Orts D, Folguera A, Gimenez M, Ramos VA (2012) Variable structural controls through time in the Southern Central Andes (~36°S). Andean Geol 39:220–241

    Google Scholar 

  • Pagano DS, Galliski MA, Márquez-Zavalía MF (2014) Emplacement of the La Peña alkaline igneous complex, Mendoza, Argentina (33°S): Implications for the early Miocene tectonic regime in the retroarc of the Andes. J S Am Earth Sci 50:48–66

    Article  Google Scholar 

  • Pankhurst RJ, Rapela CW, Fanning CM (2000) Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina. Trans Royal Soc Edinburgh. Earth Sci 91:151–168

    Article  Google Scholar 

  • Perarnau M, Alvarado P, Saez M (2012) Estimación de la estructura cortical de velocidades sísmicas en el suroeste de la Sierra de Pie de Palo, provincia de San Juan (Argentina). Rev Asoc Geol Argentina 67(4):473–480

    Google Scholar 

  • Pérez DJ (1995) Estudio geológico del Cordón del Espinacito y regiones adyacentes, provincia de San Juan. Unpubl. Ph.D. thesis. Universidad de Buenos Aires: p 262

    Google Scholar 

  • Pérez DJ (2001) Tectonic and unroofing history of Neogene Manantiales foreland basin deposits, Cordillera Frontal (32°30′S), San Juan Province, Argentina. J South Am Earth Sci 14:693–705

    Article  Google Scholar 

  • Pérez DJ, Ramos VA (1996) Los depósitos sinorogénicos. In: Ramos V.A (ed) Geología de la Región del Aconcagua. Provincias de San Juan y Mendoza. Dirección Nacional del Servicio Geológico, Anales 24(11):387–422

    Google Scholar 

  • Piquer J, Castelli JC, Charrier R, Yáñez G (2010) El Cenozoico del alto río Teno, Cordillera Principal, Chile central: estratigrafía, plutonismo y su relación con estructuras profundas. Andean Geol 37:32–53

    Google Scholar 

  • Polanski J (1964) Descripción de la Hoja 25a, Volcán San José, provincia de Mendoza, Dirección Nacional de Geolía y Minería, Buenos Aires 98: p 1–94

    Google Scholar 

  • Polanski J (1972) Carta Geológica Económica de la República Argentina escala 1:200,000, Descripción geológica de la hoja 24 a-b Cerro Tupungato, provincia de Mendoza. Buenos Aires, Dirección Nacional de Geología y Minería, p 110

    Google Scholar 

  • Porras H (2013) Registro del levantamiento de la Cordillera de los Andes durante el Mioceno basado en las características geoquímicas y mineralógicas de los depósitos sintectónicos de la Cuenca del Alto Tunuyán. (33° 30′S Argentina). Unpubl. MS thesis. Universidad de Chile: p 250

    Google Scholar 

  • Ramos VA (1994) Terranes of Southern Gondwanaland and Their Control in the Andean Structure (30°–33°S Latitude). In: Reutter K, Scheuber E, Wigger PJ (eds) Tectonics of the Southern Central Andes, Springer, Berlin, 249–261

    Google Scholar 

  • Ramos VA (1999) Los depósitos sinorogénicos terciarios de la región andina. In: Caminos RL (ed) Geología Argentina. Segemar Anales 29(3):41–96

    Google Scholar 

  • Ramos VA (2004) Cuyania, an exotic block to Gondwana: review of a historical success and the present problems. Gondwana Res 7:1009–1026

    Article  Google Scholar 

  • Ramos VA (2008) The basement of the central Andes: the Arequipa and related Terranes. Ann Rev Earth Planet Sci 36:289–324

    Article  Google Scholar 

  • Ramos VA (2010) The tectonic regime along the Andes: Present-day and Mesozoic regimes. Geol J 45(1):2–25

    Article  Google Scholar 

  • Ramos VA, Kay SM (1991) Triassic rifting and associated basalts in the Cuyo basin, central Argentina. In: Harmon R S, Rapela C W (eds), Andean Magmatism and Its Tectonic Setting, Geol Soc of America, Special Paper 265:79–91

    Google Scholar 

  • Ramos VA, Folguera A (2011) Payenia volcanic province in Southern Andes: an appraisal of an exceptional Quaternary tectonic setting. J Volcanol Geotherm Res 201:53–64

    Article  Google Scholar 

  • Ramos VA, Jordan TE, Allmendinger RW, Mpodozis C, Kay SM, Cortés JM, Palma M (1986) Paleozoic terranes of the central Argentine-Chilean Andes. Tectonics 5:855–880

    Article  Google Scholar 

  • Ramos VA, Aguirre-Urreta B, Alvarez P, Cegarra M, Cristallini EO, Kay SM, Lo Forte GL, Pereyra FX, Pérez DJ (1996a) Geología de la región del Aconcagua, provincias de San Juan y Mendoza. Dirección Nacional del Servicio Geológico, Buenos Aires, Anales 24:510

    Google Scholar 

  • Ramos VA, Cegarra M, Cristallini E (1996b) Cenozoic tectonics of the High Andes of west-central Argentina. Tectonophys 259:185–200

    Article  Google Scholar 

  • Ramos VA, Cristallini EO, Pérez DJ (2002) The Pampean flat-slab of the Central Andes. J South Am Earth Sci 15:59–78

    Article  Google Scholar 

  • Ramos VA, Zapata T, Cristallini E (2004) The Andean thrust system latitudinal variations in structural styles and orogenic shortening. In: McClay KR (ed) Thrust Tectonics and Hydrocarbons Systems: Am Assoc Petrol Geol, Memoir 82(9):30–50

    Google Scholar 

  • Ramos VA, Litvak V, Folguera A, Spagnuolo M (2014) An Andean tectonic cycle: From crustal thickening to extension in a thin crust (34°–37°SL). Geosc Frontiers 5:351–367

    Article  Google Scholar 

  • Rapalini A (2005) The accretionary history of southern South America from the latest Proterozoic to the late Palaeozoic; some palaeomagnetic constraints. Geol Soc London, Special Publication 246:305–328

    Article  Google Scholar 

  • Richter PP, Ring U, Willner AP, Leiss B (2007) Structural contacts in subduction complexes and their tectonic significance: the Late Paleozoic coastal accretionary wedge of central Chile. J Geol Soc London 164:203–214

    Article  Google Scholar 

  • Rivano S, Sepulveda P (1991) Hoja Illapel, Región de Coquimbo. Servicio Nacional de Geología y Minería, Santiago, Carta Geológica de Chile 1: 250.000: p 132

    Google Scholar 

  • Rivano S, Godoy E, Vergara M, Villarroel R (1990) Redefinición de la Formación Farellones en la Cordillera de los Andes de Chile Central (32°–34°S): Revi Geol Chile 17:205–214

    Google Scholar 

  • Rodriguez MP, Pinto Lincoñir L, Encinas A (2012) Cenozoic erosion in the Andean forearc in Central Chile (33°–34°S): Sediment provenance inferred by heavy mineral studies. In: Rasbury ET, Hemming SR, Riggs NR (eds) Mineralogical and Geochemical Approaches to Provenance. Geol Soc of America, Special Paper 487:141–162

    Google Scholar 

  • Selles D, Gana P (2001) Mapa geológico del área Talagante-San Francisco de Mostazal, Santiago de Chile, escala 1:100.000. Servicio Nacional de Geología y Minería, Santiago: p 99

    Google Scholar 

  • Shimozuru D, Kubo N (1983) Volcano spacing and subduction. In: Shimozuru D, Yokoyama I (eds) Arc Volcanism: Physics and Tectonics.Terra Scientific Tokyo: 141–151

    Google Scholar 

  • Silvestro J, Atencio M (2009) La cuenca cenozoica del río Grande y Palauco: edad, evolución y control estructural, faja plegada de Malargüe. Rev Asoc Geol Argentina 65(1):154–169

    Google Scholar 

  • Silvestro J, Kraemer P, Achilli F, Brinkworth W (2005) Evolución de las cuencas sinorogénicas de la Cordillera Principal entre 35°–36° S, Malargüe. Rev de la Asoc Geol Argentina 60(4):627–643

    Google Scholar 

  • Spagnotto S, Triep E, Giambiagi L, Lupari M (2015) Triggered seismicity in the Andean arc region via static stress variation by the Mw=8.8, February 27, 2010, Maule Earthquake. J S Am Earth Sci 63:36–47

    Google Scholar 

  • Spagnuolo M, Folguera A, Litvak V, Rojas Vera EA, Ramos VA (2012) Late Cretaceous arc rocks in the Andean retroarc region at 36.5°S: Evidence supporting a Late Cretaceous slab shallowing. J S Am Earth Sci 38:44–56

    Article  Google Scholar 

  • Spikings R, Dungan M, Foeken J, Carter A, Page L, Stuart F (2008) Tectonic response of the central Chilean margin (35–38°S) to the collision and subduction of heterogeneous oceanic crust: a thermochronological study. J Geol Soc London 165:941–995

    Article  Google Scholar 

  • Sruoga P, Rubinstein NA, Etcheverría MP, Cegarra M, Kay SM, Singer B, Lee J (2008) Estadío inicial del arco volcánico neógeno en la Cordillera Principal de Mendoza (35°S). Rev Asoc Geol Argentina 63(3):469–545

    Google Scholar 

  • Sruoga P, Rubinstein NA, Etcheverría MP, Cegarra M (2009) Volcanismo neógeno y mineralización asociada, Cordillera Principal, Mendoza (35°S). XII Congreso Geológico de Chile (Santiago de Chile): p 4

    Google Scholar 

  • Stauder W (1975) Subduction of the Nazca plate under Peru as evidenced by focal mechanisms and by seismicity. J Geophys Res 80:1053–1064

    Article  Google Scholar 

  • Stern C (2004) Active Andean volcanism: its geologic and tectonic setting. Rev Geol Chile 31(2):161–206

    Article  Google Scholar 

  • Stern CR, Skewes MA (1995) Miocene to present magmatic evolution at the northern end of the Andean Southern Volcanic Zone, central Chile. Rev Geol de Chile 22(2):261–272

    Google Scholar 

  • Tapia F, Farías M, Astaburugada D (2012) Deformación cretácica-paleocena y sus evidencias en la cordillera de los Andes de Chile Central (33.7–36°S). XI Congreso Geológico de Chile (Antofagasta), pp 232–234

    Google Scholar 

  • Tassara A, Yáñez C (2003) Relación entre el espesor elástico de la litosfera y la segmentación tectónica del margen andino (15–47°S). Rev Geol Chile 30:159–186

    Article  Google Scholar 

  • Tassara A, Goetze HJ, Hackney R (2006) Three-dimensional density modeling of the Nazca plate and the Andean continental margin. J Geophys Res. doi:10.1029/2005JB003976

    Google Scholar 

  • Terrizzano CM, Fazzito SY, Cortés JM, Rapalini AE (2010) Studies of Quaternary deformation zones through geomorphic and geophysical evidence: a case in the Precordillera Sur, Central Andes of Argentina. Tectonophysics 490:184–196

    Article  Google Scholar 

  • Tickyj H, Llambías EJ, Melchor RN (2002) Ordovician rocks from La Pampa province, Argentina. In: Aceñolaza FG (ed) Aspects of the ordovician system in Argentina. Instituto Superior de Correlación Geológica, Serie Correlación Geológica (16):257–266

    Google Scholar 

  • Triep E (1987) La falla activada durante el sismo principal de Mendoza de 1985 e implicacias tectónicas. X Congreso Geológico Argentino (San Miguel de Tucumán). Actas 1:199–202

    Google Scholar 

  • Tunik M (2003) Interpretación paleoambiental de la Formación Saldeño (Cretácico superior), en la Alta Cordillera de Mendoza, Argentina. Rev de la Asoc Geol Argentina 58:417–433

    Google Scholar 

  • Tunik M, Folguera A, Naipauer M, Pimentel M, Ramos VA (2010) Early uplift and orogenic deformation in the neuquén basin: constraints on the Andean uplift from U–Pb and Hf isotopic data of detrital zircons. Tectonophys 489(1–4):258–273

    Article  Google Scholar 

  • Turienzo M, Dimieri L, Frisicale C, Araujo V, Sánchez N (2012) Cenozoic structural evolution of the Argentinean Andes at 34°40′S: a close relationship between thick and thin-skinned deformation. Andean Geol 39(2):317–357

    Google Scholar 

  • Uliana MA, Biddle KT, Cerdán J (1989) Mesozoic extension and the formation of Argentine sedimentary basins. In: Tankard A, Balkwill H A (eds) Extensional tectonics and stratigraphy of the North Atlantic Margins. Am Assoc Petrol Geol Bulletin 46:599–614

    Google Scholar 

  • Urbina N, Sruoga P, Malvicini L (1997) Late Tertiary gold-bearing volcanic belt in the Sierras Pampeanas of San Luis, Argentina. Int Geol Rev 39:287–306

    Article  Google Scholar 

  • Varela R, Basei MAS, González PD, Sato AM, Naipauer M, Campos Neto M, Cingolani CA, Meira VT (2011) Accretion of Grenvillian terranes to the southwestern border of the Río de la Plata craton, western Argentina. Int J Earth Sci 100(2–3):243–272

    Article  Google Scholar 

  • Vergani GD, Tankard AJ, Belotti HJ, Welsink HJ (1995) Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. In: Tankard AJ, Suárez R, Welsink HJ (eds) Petroleum Basins of South America. Am Assoc Petrol Geol Bulletin, Memoir 62:383–402

    Google Scholar 

  • Vergara M, Charrier R, Munizaga F, Rivano S, Sepulveda P, Thiele R, Drake R (1988) Miocene volcanism in the central Chilean Andes (31°30′S–34°35′S). J South Am Earth Sci 1:199–209

    Article  Google Scholar 

  • Vergara M, Levi B, Nyström JO (1995) Jurassic and Early Cretaceous island arc volcanism, extension and subsidence in the Coast Range of central Chile. Geol Soc Am Bulletin 107:1427–1440

    Article  Google Scholar 

  • Vergara M, Morata D, Hickey-Vargas R (1999) Cenozoic tholeiitic volcanism in the Colbún area, Linares Precordillera, Central Chile (35°35′–36°S). Rev Geol Chile 26(1):23–41

    Article  Google Scholar 

  • Vergés J, Ramos V, Meigs A (2007) Crustal wedging triggering recent deformation in the Andean thrust front between 32°S and 33°S: Sierras Pampeanas-Precordillera interaction. J Geophys Res 112: B03S15 doi:10.1029/2006JB004287

  • Vicente JC (2005) Conglomerados Penitentes vs. Aglomerados Santa María: el frente de corrimiento polifásico del Aconcagua revisitado. xvi Congreso Geológico Argentino (La Plata). Actas 2:185–192

    Google Scholar 

  • Villar LM, Zappettini EO (2000) El Complejo alcalino Paleógeno de Puesto La Peña. Simposio Internacional Magmatismo Andino. IX Congreso Geológico de Chile, Actas 2:697–701

    Google Scholar 

  • Visconti G (2007) Sedimentología de la Formación Cerro Azul (Mioceno superior) de la provincia de La Pampa, Argentina. Unpubl. Ph.D. thesis. Universidad de La Pampa, Facultad de Ciencias Exactas y Naturales: p 208

    Google Scholar 

  • Von Gosen W (1995) Polyphase structural evolution of the southwestern Argentine Precordillera. J South Am Earth Sci 8:377–404

    Article  Google Scholar 

  • Von Gosen W (1997) Early Paleozoic and Andean structural evolution in the Rio Jáchal section of the Argentine Precordillera. J S Am Earth Sci 10:361–388

    Google Scholar 

  • Walcek A, Hoke G (2012) Surface uplift and erosion of the southern Argentine Precordillera. Geomorphology 153–154:156–168

    Article  Google Scholar 

  • Wall R, Gana P, Gutiérrez A (1996) Mapa geológico del área de San Antonio- Melipilla, regiones de Valparaíso, Metropolitana y del Libertador General Bernardo O’Higgins. Servicio Nacional de Geología y Minería, mapa 1:100.000. Santiago 2:20

    Google Scholar 

  • Wall R, Sellés D, Gana P (1999) Mapa geológico Tiltil-Santiago, Región Metropolitana. Servicio Nacional de Geología y Minería, Mapa geológico N° 9

    Google Scholar 

  • Willner AP (2005) Pressure-temperature evolution of a Late Paleozoic paired metamorphic belt in north-central Chile (34°–35°30′S). J Petrol 46(9):1805–1833. doi:10.1093/petrology/egi035

    Article  Google Scholar 

  • Willner AP, Gerdes A, Massone HJ, Schmidt A, Sudo M, Thomson SN, Vujovich G (2011) The geodynamics of collision of a microplate (Chilenia) in Devonian times deduced by the pressure temperature time evolution within part of a collisional belt (Guarguaraz Complex, W-Argentina). Contributions Mineralogy and Petrology: doi:10.1007/s00410-010-0598-8

    Google Scholar 

  • Yagupsky D, Cristallini E, Fantín J, Zamora Valcarce G, Bottesi G, Varadé R (2008) Oblique half-graben inversion of the Mesozoic Neuquén Rift in the Malargüe Fold and Thrust Belt, Mendoza, Argentina: New insights from analogue models. J Struct Geol 30:839–853

    Article  Google Scholar 

  • Yañez G, Cembrano J, Pardo M, Ranero C, Sellés D (2002) The Challenger-Juan Fernandez-Maipo major tectonic transition of the Nazca-Andean subduction system at 33–34°: Geodynamic evidence and implications. J South Am Earth Sci 15:23–38

    Article  Google Scholar 

  • Yrigoyen M (1993) Los depósitos sinorogénicos terciarios. In: Ramos V (ed) Geología y Recursos Naturales de Mendoza. Relatorio del XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos:123–148

    Google Scholar 

  • Zappettini EO, Villar LM, Hernández LB, Santos JO (2013) Geochemical and Isotopic Constraints on the Petrogenesis of the Puesto La Peña Undersaturated Potassic Complex, Mendoza Province, Argentina. Geodynamic Implications, Lithos 162–163:301–316

    Google Scholar 

  • Zurita E, Muñoz N, Charrier R, Harambour PS, Elgueta S (2000) Madurez termal de la materia orgánica de la Formación Abanico = Coya Machalí, Cordillera Principal, Chile Central: resultados e interpretación. IX Congreso Geológico de Chile (Puerto Varas): 726–730

    Google Scholar 

Download references

Acknowledgements

LG, GDH, SMM acknowledge IGCP program 586Y “Geodynamic Processes in the Andes” for stimulating much of the material presented here. This research was supported by grants from the CONICET (PIP 639, PIP 5843 and PIP 112,201,101-484) and the Agencia de Promoción Científica y Tecnológica (PICT 07-10,942 and PICT-2011-1079) to LG, JM, JS, FB and SMM. GDH also acknowledges the Donors of the American Chemical Society Petroleum Research Fund for supporting his participation in this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Giambiagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giambiagi, L. et al. (2016). Cenozoic Orogenic Evolution of the Southern Central Andes (32–36°S). In: Folguera, A., Naipauer, M., Sagripanti, L., C. Ghiglione, M., Orts, D., Giambiagi, L. (eds) Growth of the Southern Andes. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-23060-3_4

Download citation

Publish with us

Policies and ethics