Genetics of Conotruncal Anomalies



Conotruncal (or outflow tract) defects are among the most common congenital heart diseases found at birth, and are the leading cause of mortality and morbidity in the first year of life. In the last 20 years, the progenitor cells that contribute to cardiac outflow tract development have received much attention. Thus, the role of neural crest and second heart field derivatives has been established during outflow tract development. Particularly, second heart field cells contribute to growth of the outflow tract by addition of cells from the splanchnic pharyngeal mesoderm, whereas neural crest cells populate the endocardial cushions within the outflow tract. It is now well accepted that defective neural crest or second heart field deployment results in a spectrum of conotruncal anomalies ranging from outflow tract alignment to septation defects. In addition, recent studies have improved our understanding of signaling pathways and transcriptional networks required for outflow tract development. In this chapter, we present an overview of cardiac development, with emphasis on the genetic causes of outflow tract anomalies and highlight relevant genetic data for cardiac development in humans as well as animal models.


Outflow tract Conotruncal anomalies Transcription factors Tetralogy of Fallot Cardiac neural crest cells 



Work in the authors’ laboratory is supported by the Association Française contre les Myopathies (NMH-Decrypt Project), the Agence Nationale pour la Recherche (ANR-13-BSV2-0003-01), and the Institut National de la Santé et de la Recherche Médicale (S.Z.). B.L. received postdoctoral fellowship from the Fondation pour la Recherche Médicale (FRM) and the Agence Nationale pour la Recherche (ANR-13-BSV2-0003).


  1. 1.
    Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12):1890–900.CrossRefPubMedGoogle Scholar
  2. 2.
    Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 2005;6(11):826–35.CrossRefPubMedGoogle Scholar
  3. 3.
    Zaffran S, Kelly RG. New developments in the second heart field. Differentiation Res Biol Divers. 2012;84(1):17–24.CrossRefGoogle Scholar
  4. 4.
    Kirby ML. Cardiac development. Oxford: Oxford University Press; 2007.Google Scholar
  5. 5.
    Bajolle F, Zaffran S, Kelly RG, Hadchouel J, Bonnet D, Brown NA, Buckingham ME. Rotation of the myocardial wall of the outflow tract is implicated in the normal positioning of the great arteries. Circ Res. 2006;98(3):421–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Kelly RG, Brown NA, Buckingham ME. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell. 2001;1(3):435–40.CrossRefPubMedGoogle Scholar
  7. 7.
    Waldo KL, Kumiski DH, Wallis KT, Stadt HA, Hutson MR, Platt DH, Kirby ML. Conotruncal myocardium arises from a secondary heart field. Development. 2001;128(16):3179–88.PubMedGoogle Scholar
  8. 8.
    Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, Norris RA, Kern MJ, Eisenberg CA, Turner D, Markwald RR. The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol. 2001;238(1):97–109.CrossRefPubMedGoogle Scholar
  9. 9.
    Ward C, Stadt H, Hutson M, Kirby ML. Ablation of the secondary heart field leads to Tetralogy of Fallot and pulmonary atresia. Dev Biol. 2005;284(1):72–83.CrossRefPubMedGoogle Scholar
  10. 10.
    Hutson MR, Zeng XL, Kim AJ, Antoon E, Harward S, Kirby ML. Arterial pole progenitors interpret opposing FGF/BMP signals to proliferate or differentiate. Development. 2010;137(18):3001–11.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tirosh-Finkel L, Zeisel A, Brodt-Ivenshitz M, Shamai A, Yao Z, Seger R, Domany E, Tzahor E. BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors. Development. 2010;137(18):2989–3000.CrossRefPubMedGoogle Scholar
  12. 12.
    Waldo KL, Hutson MR, Ward CC, Zdanowicz M, Stadt HA, Kumiski D, Abu-Issa R, Kirby ML. Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. Dev Biol. 2005;281(1):78–90.CrossRefPubMedGoogle Scholar
  13. 13.
    Neeb Z, Lajiness JD, Bolanis E, Conway SJ. Cardiac outflow tract anomalies. Wiley Interdiscip Rev Dev Biol. 2013;2(4):499–530.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yelbuz TM, Waldo KL, Kumiski DH, Stadt HA, Wolfe RR, Leatherbury L, Kirby ML. Shortened outflow tract leads to altered cardiac looping after neural crest ablation. Circulation. 2002;106(4):504–10.CrossRefPubMedGoogle Scholar
  15. 15.
    Goldmuntz E, Bamford R, Karkera JD, dela Cruz J, Roessler E, Muenke M. CFC1 mutations in patients with transposition of the great arteries and double-outlet right ventricle. Am J Hum Genet. 2002;70(3):776–80.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K, Matsuoka R, Cohen JC, Srivastava D. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424(6947):443–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Wei D, Bao H, Liu XY, Zhou N, Wang Q, Li RG, Xu YJ, Yang YQ. GATA5 loss-of-function mutations underlie Tetralogy of Fallot. Int J Med Sci. 2013;10(1):34–42.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Maitra M, Koenig SN, Srivastava D, Garg V. Identification of GATA6 sequence variants in patients with congenital heart defects. Pediatr Res. 2010;68(4):281–5.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Karkera JD, Lee JS, Roessler E, Banerjee-Basu S, Ouspenskaia MV, Mez J, Goldmuntz E, Bowers P, Towbin J, Belmont JW, Baxevanis AD, Schier AF, Muenke M. Loss-of-function mutations in growth differentiation factor-1 (GDF1) are associated with congenital heart defects in humans. Am J Hum Genet. 2007;81(5):987–94.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Spinner NB, Colliton RP, Crosnier C, Krantz ID, Hadchouel M, Meunier-Rotival M. Jagged1 mutations in Alagille syndrome. Hum Mutat. 2001;17(1):18–33.CrossRefPubMedGoogle Scholar
  21. 21.
    Schott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP, Maron BJ, Seidman CE, Seidman JG. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science. 1998;281(5373):108–11.CrossRefPubMedGoogle Scholar
  22. 22.
    Ta-Shma A, Pierri CL, Stepensky P, Shaag A, Zenvirt S, Elpeleg O, Rein AJ. Isolated truncus arteriosus associated with a mutation in the plexin-D1 gene. Am J Med Genet A. 2013;161A(12):3115–20.CrossRefPubMedGoogle Scholar
  23. 23.
    Muncke N, Jung C, Rudiger H, Ulmer H, Roeth R, Hubert A, Goldmuntz E, Driscoll D, Goodship J, Schon K, Rappold G. Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect (transposition of the great arteries). Circulation. 2003;108(23):2843–50.CrossRefPubMedGoogle Scholar
  24. 24.
    Yagi H, Furutani Y, Hamada H, Sasaki T, Asakawa S, Minoshima S, Ichida F, Joo K, Kimura M, Imamura S, Kamatani N, Momma K, Takao A, Nakazawa M, Shimizu N, Matsuoka R. Role of TBX1 in human del22q11.2 syndrome. Lancet. 2003;362(9393):1366–73.CrossRefPubMedGoogle Scholar
  25. 25.
    Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, Grayzel D, Kroumpouzou E, Traill TA, Leblanc-Straceski J, Renault B, Kucherlapati R, Seidman JG, Seidman CE. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997;15(1):30–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Lambrechts D, Devriendt K, Driscoll DA, Goldmuntz E, Gewillig M, Vlietinck R, Collen D, Carmeliet P. Low expression VEGF haplotype increases the risk for Tetralogy of Fallot: a family based association study. J Med Genet. 2005;42(6):519–22.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pizzuti A, Sarkozy A, Newton AL, Conti E, Flex E, Digilio MC, Amati F, Gianni D, Tandoi C, Marino B, Crossley M, Dallapiccola B. Mutations of ZFPM2/FOG2 gene in sporadic cases of Tetralogy of Fallot. Hum Mutat. 2003;22(5):372–7.CrossRefPubMedGoogle Scholar
  28. 28.
    D'Alessandro LC, Latney BC, Paluru PC, Goldmuntz E. The phenotypic spectrum of ZIC3 mutations includes isolated d-transposition of the great arteries and double outlet right ventricle. Am J Med Genet A. 2013;161A(4):792–802.CrossRefPubMedGoogle Scholar
  29. 29.
    Eldadah ZA, Hamosh A, Biery NJ, Montgomery RA, Duke M, Elkins R, Dietz HC. Familial Tetralogy of Fallot caused by mutation in the jagged1 gene. Hum Mol Genet. 2001;10(2):163–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Goldmuntz E, Geiger E, Benson DW. NKX2.5 mutations in patients with Tetralogy of Fallot. Circulation. 2001;104(21):2565–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Nemer G, Fadlalah F, Usta J, Nemer M, Dbaibo G, Obeid M, Bitar F. A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot. Hum Mutat. 2006;27(3):293–4.CrossRefPubMedGoogle Scholar
  32. 32.
    Lin X, Huo Z, Liu X, Zhang Y, Li L, Zhao H, Yan B, Liu Y, Yang Y, Chen YH. A novel GATA6 mutation in patients with Tetralogy of Fallot or atrial septal defect. J Hum Genet. 2010;55(10):662–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Baldini A. Dissecting contiguous gene defects: TBX1. Curr Opin Genet Dev. 2005;15(3):279–84.CrossRefPubMedGoogle Scholar
  34. 34.
    Griffin HR, Topf A, Glen E, Zweier C, Stuart AG, Parsons J, Peart I, Deanfield J, O'Sullivan J, Rauch A, Scambler P, Burn J, Cordell HJ, Keavney B, Goodship JA. Systematic survey of variants in TBX1 in non-syndromic Tetralogy of Fallot identifies a novel 57 base pair deletion that reduces transcriptional activity but finds no evidence for association with common variants. Heart. 2010;96(20):1651–5.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Makki N, Capecchi MR. Cardiovascular defects in a mouse model of HOXA1 syndrome. Hum Mol Genet. 2012;21(1):26–31.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Donovan J, Kordylewska A, Jan YN, Utset MF. Tetralogy of Fallot and other congenital heart defects in Hey2 mutant mice. Curr Biol. 2002;12(18):1605–10.CrossRefPubMedGoogle Scholar
  37. 37.
    Ishii M, Han J, Yen HY, Sucov HM, Chai Y, Maxson Jr RE. Combined deficiencies of Msx1 and Msx2 cause impaired patterning and survival of the cranial neural crest. Development. 2005;132(22):4937–50.CrossRefPubMedGoogle Scholar
  38. 38.
    De Luca A, Sarkozy A, Ferese R, Consoli F, Lepri F, Dentici ML, Vergara P, De Zorzi A, Versacci P, Digilio MC, Marino B, Dallapiccola B. New mutations in ZFPM2/FOG2 gene in Tetralogy of Fallot and double outlet right ventricle. Clin Genet. 2011;80(2):184–90.CrossRefPubMedGoogle Scholar
  39. 39.
    Pehlivan T, Pober BR, Brueckner M, Garrett S, Slaugh R, Van Rheeden R, Wilson DB, Watson MS, Hing AV. GATA4 haploinsufficiency in patients with interstitial deletion of chromosome region 8p23.1 and congenital heart disease. Am J Med Genet. 1999;83(3):201–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Watanabe Y, Miyagawa-Tomita S, Vincent SD, Kelly RG, Moon AM, Buckingham ME. Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries. Circ Res. 2010;106(3):495–503.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Abu-Issa R, Smyth G, Smoak I, Yamamura K, Meyers EN. Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development. 2002;129(19):4613–25.PubMedGoogle Scholar
  42. 42.
    Frank DU, Fotheringham LK, Brewer JA, Muglia LJ, Tristani-Firouzi M, Capecchi MR, Moon AM. An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development. 2002;129(19):4591–603.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Park EJ, Ogden LA, Talbot A, Evans S, Cai CL, Black BL, Frank DU, Moon AM. Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development. 2006;133(12):2419–33.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Beppu H, Malhotra R, Beppu Y, Lepore JJ, Parmacek MS, Bloch KD. BMP type II receptor regulates positioning of outflow tract and remodeling of atrioventricular cushion during cardiogenesis. Dev Biol. 2009;331(2):167–75.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet. 2006;79(1):169–73.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    McCright B, Lozier J, Gridley T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development. 2002;129(4):1075–82.PubMedGoogle Scholar
  47. 47.
    Martins P, Castela E. Transposition of the great arteries. Orphanet J Rare Dis. 2008;3:27.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Megarbane A, Salem N, Stephan E, Ashoush R, Lenoir D, Delague V, Kassab R, Loiselet J, Bouvagnet P. X-linked transposition of the great arteries and incomplete penetrance among males with a nonsense mutation in ZIC3. Eur J Hum Genet EJHG. 2000;8(9):704–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Gonzalez-Iriarte M, Carmona R, Perez-Pomares JM, Macias D, Costell M, Munoz-Chapuli R. Development of the coronary arteries in a murine model of transposition of great arteries. J Mol Cell Cardiol. 2003;35(7):795–802.CrossRefPubMedGoogle Scholar
  50. 50.
    Kodo K, Nishizawa T, Furutani M, Arai S, Yamamura E, Joo K, Takahashi T, Matsuoka R, Yamagishi H. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci U S A. 2009;106(33):13933–8.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Olaopa M, Zhou HM, Snider P, Wang J, Schwartz RJ, Moon AM, Conway SJ. Pax3 is essential for normal cardiac neural crest morphogenesis but is not required during migration nor outflow tract septation. Dev Biol. 2011;356(2):308–22.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Feiner L, Webber AL, Brown CB, Lu MM, Jia L, Feinstein P, Mombaerts P, Epstein JA, Raper JA. Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development. 2001;128(16):3061–70.PubMedGoogle Scholar
  53. 53.
    Fahed AC, Gelb BD, Seidman JG, Seidman CE. Genetics of congenital heart disease: the glass half empty. Circ Res. 2013;112(4):707–20.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Génétique Médicale & Génomique Fonctionnelle (GMGF), UMR_S910Aix Marseille Université, Faculté de Médecine de la TimoneMarseilleFrance
  2. 2.Inserm, U910MarseilleFrance
  3. 3.Medical Genetics & Functional Genomics, UMR_S910Aix Marseille Université, Medical School of MarseilleMarseilleFrance
  4. 4.Laboratoire de Génétique Médicale et Génomique Fonctionnelle, Faculté de MédecinMarseilleFrance

Personalised recommendations