Skip to main content
Book cover

Porosity pp 5–13Cite as

Food as a Material

  • Chapter

Part of the book series: SpringerBriefs in Food, Health, and Nutrition ((BRIEFSFOOD))

Abstract

Plant-based food materials possess a very complex structure. To express this complexity, food materials can be classified as hygroscopic porous materials. Drying involves simultaneous heat and mass transfer, and it is well established that these transfer mechanisms are strongly affected by the composition and structure of the associated material. Hence, it is essential to understand the material properties of food material before carrying out any type of processing involving heat and mass transfer. In this chapter, the material-related properties of foodstuffs are discussed in detail. Subsequently, various aspects of porosity, including pore size, pore size distribution, and specific surface, are explained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguilera JM (2005) Why food microstructure? J Food Eng 67(1–2):3–11. doi:10.1016/j.jfoodeng.2004.05.050

    Article  Google Scholar 

  • Aguilera JM, Stanley DW (eds) (1999) Microstructural principles of food processing and engineering, 2nd edn. Aspen, Gaithersburg

    Google Scholar 

  • Bhandari B (2012) Food materials science and engineering. Wiley, Chichester

    Book  Google Scholar 

  • Boukouvalas CJ, Krokida MK, Maroulis ZB, Marinos-Kouris D (2006) Density and porosity: literature data compilation for foodstuffs. Int J Food Prop 9(4):715–746

    Article  Google Scholar 

  • Chen XD, Mujumdar AS (2008) Drying technologies in food processing. Wiley, West Sussex

    Google Scholar 

  • Cnossen AG, Siebenmorgen T (2000) The glass transition temperature concept in rice drying and tempering: effect on milling quality. Trans Am Soc Agric Eng 43(6):1661–1667

    Article  Google Scholar 

  • Datta AK (2007) Porous media approaches to studying simultaneous heat and mass transfer in food processes. I. Problem formulations. J Food Eng 80(1):80–95

    Article  Google Scholar 

  • Geankoplis CJ (1993) Transport processes and unit operations, 3rd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Goedeken DL, Tong CH (1993) Permeability measurements of porous food materials. J Food Sci 58(6):1329–1333. doi:10.1111/j.1365-2621.1993.tb06176.x

    Article  Google Scholar 

  • Hartel RW (2001) Crystallization in foods. Aspen, Gaithersburg

    Google Scholar 

  • Jones SB, Or D (2002) Surface area, geometrical and configurational effects on permittivity of porous media. J Non Cryst Solids 305(1–3):247–254. doi:10.1016/S0022-3093(02)01098-0

    Article  CAS  Google Scholar 

  • Karathanos V, Anglea S, Karel M (1993) Collapse of structure during drying of celery. Drying Technol 11(5):1005–1023

    Article  Google Scholar 

  • Karathanos VT, Anglea SA, Karel M (1996a) Structural collapse of plant materials during freeze-drying. J Therm Anal 47(5):1451–1461

    Article  CAS  Google Scholar 

  • Karathanos VT, Kanellopoulos NK, Belessiotis VG (1996b) Development of porous structure during air drying of agricultural plant products. J Food Eng 29(2):167–183

    Article  Google Scholar 

  • Karel M, Lund DB (2003) Physical principles of food preservation, 2nd edn. Marcel Dekker, New York

    Book  Google Scholar 

  • Krokida MK, Maroulis ZB (1997) Effect of drying method on shrinkage and porosity. Drying Technol 15(10):2441–2458

    Article  Google Scholar 

  • Lian Y (2001) Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev 48(1):27–42. doi:10.1016/S0169-409X(01)00098-9

    Article  Google Scholar 

  • Mathlouthi M (2001) Water content, water activity, water structure and the stability of foodstuffs. Food Control 12(7):409–417

    Article  Google Scholar 

  • Mebatsion HK, Verboven P, Ho QT, Verlinden BE, Nicolaï BM (2008) Modelling fruit (micro)structures, why and how? Trends Food Sci Technol 19(2):59–66. doi:10.1016/j.tifs.2007.10.003

    Article  CAS  Google Scholar 

  • Prachayawarakorn S, Prakotmak P, Soponronnarit S (2008) Effects of pore size distribution and pore-architecture assembly on drying characteristics of pore networks. Int J Heat Mass Transf 51(1–2):344–352. doi:10.1016/j.ijheatmasstransfer.2007.03.055

    Article  CAS  Google Scholar 

  • Rahman MS (2001) Towards prediction of porosity in food foods during drying: a brief review. Drying Technol 19(1):3–15

    Article  Google Scholar 

  • Rahman MS, Perera CO, Chen XD, Driscoll RH, Potluri PL (1996) Density, shrinkage and porosity of calamari mantle meat during air drying in a cabinet dryer as a function of water content. J Food Eng 30(1–2):135–145

    Article  Google Scholar 

  • Rahman MS, Al-Amri OS, Al-Bulushi IM (2002) Pores and physico-chemical characteristics of dried tuna produced by different methods of drying. J Food Eng 53(4):301–313. doi:10.1016/s0260-8774(01)00169-8

    Article  Google Scholar 

  • Rassis DA, Nussinovitch IS, Saguy (1997) Tailor-made porous solid foods. International Journal of Food Science and Technology, 32(4): p. 271–278

    Google Scholar 

  • Reeve RM (1953) Histological investigations of texture in apples. J Food Sci 18(1–6):604–617. doi:10.1111/j.1365-2621.1953.tb17756.x

    Article  Google Scholar 

  • Roos YH (1995) Phase transition in foods. Academic, San Diego

    Google Scholar 

  • Roos YH (1998) Phase transitions and structure of solid food matrices. Curr Opin Colloid Interface Sci 3(6):651–656

    Article  CAS  Google Scholar 

  • Roos YH (2003) Thermal analysis, state transitions and food quality. J Therm Anal Calorim 71(1):197–203. doi:10.1023/A:1022234805054

    Article  CAS  Google Scholar 

  • Rosselló C (1992) Simple mathematical model to predict the drying rates of potatoes. J Agric Food Chem 40(12):2374–2378

    Article  Google Scholar 

  • Slade L, Levine H (1991) A food polymer science approach to structure-property relationships in aqueous food systems: non-equilibrium behavior of carbohydrate-water systems. Adv Exp Med Biol 302:29–101

    Article  CAS  Google Scholar 

  • Ting VJL, Silcock P, Bremer PJ, Biasioli F (2013) X-ray micro-computer tomographic method to visualize the microstructure of different apple cultivars. J Food Sci 78(11):E1735–E1742. doi:10.1111/1750-3841.12290

    Article  CAS  Google Scholar 

  • Waananen KM, Okos MR (1996) Effect of porosity on moisture diffusion during drying of pasta. J Food Eng 28(2):121–137

    Article  Google Scholar 

  • Yao Y, Lenhoff AM (2004) Determination of pore size distributions of porous chromatographic adsorbents by inverse size-exclusion chromatography. J Chromatogr A 1037(1–2):273–282. doi:10.1016/j.chroma.2004.02.054

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Joardder, M.U.H., Karim, A., Kumar, C., Brown, R.J. (2016). Food as a Material. In: Porosity. SpringerBriefs in Food, Health, and Nutrition. Springer, Cham. https://doi.org/10.1007/978-3-319-23045-0_2

Download citation

Publish with us

Policies and ethics