Steganalysis of LSB Using Energy Function

  • P. P. Amritha
  • M. Sreedivya Muraleedharan
  • K. Rajeev
  • M. Sethumadhavan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 384)


This paper introduces an approach to estimate energy of pixel associated with its neighbors. We define an energy function of a pixel which replaces the pixel value by mean or median value of its neighborhood. The correlations inherent in a cover signal can be used for steganalysis, i.e, detection of presence of hidden data. Because of the interpixel dependencies exhibited by natural images this function was able to differentiate between cover and stego image. Energy function was modeled using Gibbs distribution even though pixels in an image have the property of Markov Random Field. Our method is trained to specific embedding techniques and has been tested on different textured images and is shown to provide satisfactory result in classifying cover and stego using energy distribution.


Markov random field Steganography Steganalysis Gibbs distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bouman, C.: Model based image processing. Purdue University (2013)Google Scholar
  2. 2.
    Chellappa, R., Jain, A.: Markov random fields. theory and application, vol. 1 (1993)Google Scholar
  3. 3.
    Fridrich, J., Goljan, M.: Practical steganalysis of digital images-state of the art. In: Proceedings of SPIE, vol. 4675, pp. 1–13Google Scholar
  4. 4.
    Goljan, M., Fridrich, J., Cogranne, R.: Rich model for steganalysis of color images. In: IEEE Workshop on Information Forensic and Security, Atlanta, GA (2014)Google Scholar
  5. 5.
    Johnson, N.F., Jajodia, S.: Exploring steganography: seeing the unseen, vol. 31, pp. 26–34. IEEE (1998)Google Scholar
  6. 6.
    Köster, U., Lindgren, J.T., Hyvärinen, A.: Estimating markov random field potentials for natural images. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds.) ICA 2009. LNCS, vol. 5441, pp. 515–522. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  7. 7.
    Krizhevsky, A., Hinton, G.E., et al.: Factored 3-way restricted boltzmann machines for modeling natural images. In: International Conference on Artificial Intelligence and Statistics, pp. 621–628 (2010)Google Scholar
  8. 8.
    Li, S.Z.: Markov random field modeling in computer vision. Springer-Verlag New York, Inc. (1995)Google Scholar
  9. 9.
    Osindero, S., Hinton, G.E.: Modeling image patches with a directed hierarchy of markov random fields. In: Advances in Neural Information Processing Systems, pp. 1121–1128 (2008)Google Scholar
  10. 10.
    Rangarajan, A., Chellappa, R.: Markov random field models in image processing. Citeseer (1995)Google Scholar
  11. 11.
    Ranzato, M., Hinton, G.E.: Modeling pixel means and covariances using factorized third-order boltzmann machines. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2551–2558. IEEE (2010)Google Scholar
  12. 12.
    Ranzato, M., Mnih, V., Susskind, J.M., Hinton, G.E.: Modeling natural images using gated mrfs. IEEE Transactions on Pattern Analysis and Machine Intelligence 9, 2206–2222 (2013)CrossRefGoogle Scholar
  13. 13.
    Roth, S., Black, M.J.: Fields of experts: a framework for learning image priors. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 860–867. IEEE (2005)Google Scholar
  14. 14.
    Wang, C., Komodakis, N., Paragios, N.: Markov random field modeling, inference and learning in computer vision and image understanding: A survey. Computer Vision and Image Understanding 117(11), 1610–1627 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • P. P. Amritha
    • 1
  • M. Sreedivya Muraleedharan
    • 1
  • K. Rajeev
    • 1
  • M. Sethumadhavan
    • 1
  1. 1.TIFAC CORE in Cyber SecurityAmrita Vishwa VidyapeethamCoimbatoreIndia

Personalised recommendations