Skip to main content

Application of Hybrid Neuro-Wavelet Models for Effective Prediction of Wind Speed

  • Conference paper
  • First Online:
Intelligent Systems Technologies and Applications

Abstract

Severe energy crisis and depletion of fossil fuels necessitates more number of installations of wind farms. Accurate wind forecast is crucial in the efficient utilization and power management of wind farms connected to a grid or in conjunction with other sources such as solar, DG, battery, etc. This paper proposes a hybrid neuro-wavelet predictive tool to predict wind speed which combines the advantages of both wavelet decomposition and neural network. Wavelet decomposition is used to filter out the high frequency outliers in the wind speed, thus making a smooth data to make the prediction accurate. The filtered data is used to train the neural network. Four different models are proposed. NAR-TS model and NAR-Wavelet models are univariate models with past values of wind speed as input. In NAR-TS model time series values are directly applied as input to neural network, whereas in NAR-Wavelet model input to the neural network is the wavelet decomposed data. In a similar way NARX-TS and NARX-Wavelet models are developed with multivariate neural network, where the inputs are air temperature, relative humidity and wind speed which is the feed back. Each of these models are used to predict 4.5 hours ahead and 18 hours ahead predictions. The Mean Average Percentage Error (MAPE) values are calculated for each model and the results are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yuehui, H., Jing, L.: Comparative Study of Power Forecasting Methods for PV Stations, Master thesis, China Electric Power Research Institute (CEPRI), Beijing, China (2010)

    Google Scholar 

  2. Prema, V., Uma Rao, K.: Predictive models for power management of a hybrid microgrid A review. In: 2nd International Conference on Advances in Energy Conversion Technology (ICAECT 2014), pp. 185–197. Manipal Institute of Technology, Manipal (2014)

    Google Scholar 

  3. Saurabh, S., Hamidreza, Z.: A review of wind power and wind speed forecasting methods with different time horizons. In: 25th International Cosmic Ray Conference, Durban, South Africa (2010)

    Google Scholar 

  4. Foley, A.M., Leahy, P.G., Marvuglia, A., McKeogh, E.J.: Current methods and advances in forecasting of wind power generation. Renewable Energy 37, 1–8 (2012)

    Article  Google Scholar 

  5. Ma, L., Luan, S.Y., Jiang, C.W., Liu, H.L., Zhang, Y.: A review on the forecasting of wind speed and generated power. Renewable and Sustainable Energy Reviews 13, 915–920 (2009)

    Article  Google Scholar 

  6. George, S., Nikos, D.H.: An advanced Statistical Method for wind power Forecasting. IEEE Transactions on Power Systems 22(1), 68–77 (2007)

    Article  Google Scholar 

  7. Palomares-Salas, J.C., De la Rosa, J.J.G., Ramiro, J.G., Melgar, J.: ARIMA vs. Neural networks for wind speed forecasting. In: IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, pp. 129–133 (2009)

    Google Scholar 

  8. Wan Ahmad, W.K.A., Ahmad, S.: Arima model and exponential smoothing method: a comparison. In: Proceedings of the 20th National Symposium on Mathematical Sciences (SKSM20), Malaysia, pp. 1312–1321 (2012)

    Google Scholar 

  9. Mallat, S.: A Theory for multiresolution signal decomposition : the wavelet representation. IEEE Pattern Analysis and Machine Intelligence 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Prema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Prema, V., Uma Rao, K., Jnaneswar, B.S., Badarish, C.A., Shreenidhi Ashok, P., Agarwal, S. (2016). Application of Hybrid Neuro-Wavelet Models for Effective Prediction of Wind Speed. In: Berretti, S., Thampi, S., Srivastava, P. (eds) Intelligent Systems Technologies and Applications. Advances in Intelligent Systems and Computing, vol 384. Springer, Cham. https://doi.org/10.1007/978-3-319-23036-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23036-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23035-1

  • Online ISBN: 978-3-319-23036-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics