A Hybrid Firefly Algorithm and Social Spider Algorithm for Multimodal Function

  • Samiti Gupta
  • Sankalap Arora
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 384)


The fast growing complexity of optimization problems has motivated researchers to search for efficient problem solving methods. In this paper, the concept of hybridization is introduced to solve the optimization problems which make the use of concept of exploration and exploitation over search space efficiently. The proposed algorithm is formulated by combining the biological processes of Firefly Algorithm (FA) and Social Spider Algorithm (SSA). The proposed algorithm is tested on various standard benchmark problems and then compared with FA and SSA. The results show that the proposed algorithm performs better than the FA and SSA on most of the benchmark functions.


Swarm Intelligence Firefly Algorithm Social Spider Algorithm Hybridization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gandomi, A.H., Yang, X.-S., Alavi, A.H.: Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23), 2325–2336 (2011)CrossRefGoogle Scholar
  2. 2.
    Adorio, E.P., Diliman, U.: Mvf-multivariate test functions library in c for unconstrained global optimization (2005)Google Scholar
  3. 3.
    Apostolopoulos, T., Vlachos, A.: Application of the firefly algorithm for solving the economic emissions load dispatch problem. International Journal of Combinatorics 2011 (2010)Google Scholar
  4. 4.
    Blackwell, T.M.: Particle swarms and population diversity. Soft Computing 9, 793–802 (2005)CrossRefMATHGoogle Scholar
  5. 5.
    Barnard, C., Sibly, R.: Producers and scroungers: A general model and its application to captive flocks of house sparrows. Animal Behavior 29(2), 543–550 (1981)CrossRefGoogle Scholar
  6. 6.
    Chatterjee, A., Mahanti, G.K., Chatterjee, A.: Design of a fully digital controlled reconfigurable switched beam concentric ring array antenna using firefly and particle swarm optimization algorithm. Progress In Electromagnetics Research B 36, 113–131 (2012)CrossRefGoogle Scholar
  7. 7.
    Clerc, M.: Particle swarm optimization, vol. 93. John Wiley & Sons (2010)Google Scholar
  8. 8.
    Clark, C.W., Mangel, M.: Foraging and Flocking strategies: Information in an uncertain environment. The American Naturalist 123(5), 626–664 (1984)CrossRefGoogle Scholar
  9. 9.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of global optimization 39(3), 459–471 (2007)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Applied soft computing 8(1), 687–697 (2008)CrossRefGoogle Scholar
  11. 11.
    Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Computational Intelligence Magazine 1(4), 28–39 (2006)CrossRefGoogle Scholar
  12. 12.
    Cuevas, E., Cienguegos, M., Zaldvar, D., Perez Cisneros, M.: A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems with Applications 40(16), 6374–6384 (2013)CrossRefGoogle Scholar
  13. 13.
    Cuevas, E., Cienfuegos, M.: A new algorithm inspired in the behavior of the social-spider for constrained optimization. Expert Systems with Applications 41(2), 412–425 (2014)CrossRefGoogle Scholar
  14. 14.
    Jati, G.K.: Evolutionary discrete firefly algorithm for travelling salesman problem. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Horng, M.-H.: Vector quantization using the firefly algorithm for image compression. Expert Systems with Applications 39(1), 1078–1091 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kennedy, J., Kennedy, J.F., Eberhart, R.C.: Swarm intelligence. Morgan Kaufmann (2001)Google Scholar
  17. 17.
    Kennedy, J.: Particle swarm optimization, pp. 760–766. Springer, US (2010)Google Scholar
  18. 18.
    James J.Q, Victor O.K.: A Social Spider Algorithm for Global Algorithm. Technical Report No. TR 2013-004, The University of Hong Kong, October 2013Google Scholar
  19. 19.
    Khadwilard, A., et al.: Application of firefly algorithm and its parameter setting for job shop scheduling. In: First Symposius on Hands-On Research and Development, pp. 89–97 (2011)Google Scholar
  20. 20.
    Davis, L. (ed.): Handbook of genetic algorithms, vol. 115. Van Nostrand Reinhold, New York (1991)Google Scholar
  21. 21.
    Dorigo, M., Birattari, M.: Ant colony optimization, pp. 36–39. Springer, US (2010)Google Scholar
  22. 22.
    Mendes, R., Kennedy, J., Neves, J.: Watch thy neighbor or how the swarm can learn from its environment. In: Proceedings of the IEEE Swarm Intelligence Symposium (SIS), pp. 88–94. IEEE, Piscataway (2003)Google Scholar
  23. 23.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm intelligence 1(1), 33–57 (2007)CrossRefGoogle Scholar
  24. 24.
    Sayadi, M., Ramezanian, R., Ghaffari-Nasab, N.: A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems. International Journal of Industrial Engineering Computations 1(1), 1–10 (2010)CrossRefGoogle Scholar
  25. 25.
    Senthilnath, J., Omkar, S.N., Mani, V.: Clustering using firefly algorithm: performance study. Swarm and Evolutionary Computation 1(3), 164–171 (2011)CrossRefGoogle Scholar
  26. 26.
    Farahani, S.M., Abshouri, A.A., Nasiri, B., Meybodi, M.R.: A Gaussian firefly algorithm. Int. J. Machine Learning and Computing 1(5), 448–453 (2011)CrossRefGoogle Scholar
  27. 27.
    Palit, S., Sinha, S., Molla, M., Khanra, A., Kule, M.: A cryptanalytic attack on the knapsack cryptosystem using binary Firefly algorithm. In: 2nd Int. Conference on Computer and Communication Technology (ICCCT), 15–17 September 2011, India, pp. 428–432 (2011)Google Scholar
  28. 28.
    Łukasik, S., Żak, S.: Firefly algorithm for continuous constrained optimization tasks. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 97–106. Springer, Heidelberg (2009)Google Scholar
  29. 29.
    Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Yang, X.-S.: Firefly algorithm, Levy flights and global optimization. Research and Development in Intelligent Systems XXVI, pp. 209–218. Springer, London (2010)Google Scholar
  31. 31.
    Yang, X.-S.: Firefly algorithm, stochastic test functions and design optimisation. International Journal of Bio-Inspired Computation 2(2), 78–84 (2010)CrossRefGoogle Scholar
  32. 32.
    Yang, X.S.: Chaos-enhanced firefly algorithm with automatic parameter tuning. Int. J. Swarm Intelligence Research 2(4), 1–11 (2011)CrossRefGoogle Scholar
  33. 33.
    Yang, X.-S.: Swarm Intelligence Based Algorithms: A Critical Analysis. Evolutionary Intelligence 7(1), 17–28 (2014)CrossRefGoogle Scholar
  34. 34.
    Zaman, M.A., Matin, A.: Nonuniformly spaced linear antenna array design using firefly algorithm. International Journal of Microwave Science and Technology 2012 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Computer Science DepartmentDAV UniversityJalandharIndia

Personalised recommendations