Advertisement

Weighted Unranked Tree Automata over Tree Valuation Monoids and Their Characterization by Weighted Logics

  • Manfred Droste
  • Doreen Heusel
  • Heiko VoglerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9270)

Abstract

We introduce a new behavior of weighted unranked tree automata. We prove a characterization of this behavior by two fragments of weighted MSO logic and thereby provide a solution of an open equivalence problem of Droste and Vogler. The characterization works for valuation monoids as weight structures; they include all semirings and, in addition, enable us to cope with average.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bollig, B., Gastin, P.: Weighted versus probabilistic logics. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 18–38. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  2. 2.
    Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regular hedge languages over unranked alphabets: version 1. Technical Report HKUST-TCSC-2001-0, The Honkong University of Sience and Technologie (2001)Google Scholar
  3. 3.
    Brüggemann-Klein, A., Wood, D.: Regular tree languages over non-ranked alphabets (1998). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.5397
  4. 4.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  5. 5.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Alternating weighted automata. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 3–13. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  6. 6.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Probabilistic weighted automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 244–258. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  7. 7.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties for quantitative languages. In: Proceedings of LICS 2009, pp. 199–208. IEEE Computer Society (2009)Google Scholar
  8. 8.
    Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007). http://www.grappa.univ-lille3.fr/tata
  9. 9.
    Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoretical Computer Science 380, 69–86 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Droste, M., Götze, D., Märcker, S., Meinecke, I.: Weighted tree automata over valuation monoids and their characterization by weighted logics. In: Kuich, W., Rahonis, G. (eds.) Algebraic Foundations in Computer Science. LNCS, vol. 7020, pp. 30–55. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  11. 11.
    Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. EATCS Monographs on Theoretical Computer Science, Springer (2009)Google Scholar
  12. 12.
    Droste, M., Meinecke, I.: Weighted automata and weighted MSO logics for average- and longtime-behaviors. Information and Computation 220–221, 44–59 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Droste, M., Rahonis, G.: Weighted automata and weighted logics with discounting. Theory of Computing Systems 410(37), 3481–3494 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Droste, M., Vogler, H.: Weighted tree automata and weighted logics. Theoretical Computer Science 366, 228–247 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Droste, M., Vogler, H.: Weighted logics for unranked tree automata. Theory of Computing Systems 48, 23–47 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Droste, M., Vogler, H.: Kleene and Büchi theorems for weighted automata and multi-valued logics over arbitrary bounded lattices. Theoretical Computer Science 418, 14–36 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Fichtner, I.: Weighted picture automata and weighted logics. Theory of Computing Systems 48(1), 48–78 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers, chap. 9. In: Droste et al. [11] (2009)Google Scholar
  19. 19.
    Fülöp, Z., Vogler, H.: Forward and backward application of symbolic tree transducers. Acta Informatica 51, 297–325 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser Verlag (January 2003)Google Scholar
  21. 21.
    Högberg, J., Maletti, A., Vogler, H.: Bisimulation minimisation of weighted automata on unranked trees. Fundamenta Informaticae 92, 103–130 (2009)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Libkin, L.: Logics for unranked trees: an overview. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 35–50. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  23. 23.
    Mathissen, C.: Definable transductions and weighted logics for texts. Theoretical Computer Science 411, 631–659 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Mathissen, C.: Weighted logics for nested words and algebraic formal power series. Logical Methods in Computer Science 6 (2010)Google Scholar
  25. 25.
    Meinecke, I.: Weighted logics for traces. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 235–246. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  26. 26.
    Murata, M.: Forest-regular languages and tree-regular languages (1995). (unpublished manuscript)Google Scholar
  27. 27.
    Neven, F.: Automata, logic, and XML. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, p. 2. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  28. 28.
    Rahonis, G.: Weighted Muller tree automata and weighted logics. Journal of Automata, Languages and Combinatorics 12, 455–483 (2007)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Tan, T.: Extending two-variable logic on data trees with order on data values and its automata. ACM Transactions on Computational Logic 15, 8:1–8:39 (2014)CrossRefGoogle Scholar
  30. 30.
    Thatcher, J.W.: Characterizing derivation trees of context-free grammars through a generalization of finite automata theory. Journal of Computer and System Sciences 1, 317–322 (1967)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. A, pp. 389–455. Springer (1997)Google Scholar
  32. 32.
    Veanes, M., Bjørner, N.: Symbolic tree transducers. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 377–393. Springer, Heidelberg (2012) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für InformatikUniversität LeipzigLeipzigGermany
  2. 2.Institut für Theoretische InformatikTechnische Universität DresdenDresdenGermany

Personalised recommendations