Advertisement

Effective Invariant Theory of Permutation Groups Using Representation Theory

  • Nicolas BorieEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9270)

Abstract

Using the representation theory of the symmetric group, we propose an algorithm to compute the invariant ring of a permutation group in the non modular case. Our approach has the advantage of reducing the amount of linear algebra computations and exploits a finer combinatorial description of the invariant ring. We build explicit generators for invariant rings by means of the higher Specht polynomials of the symmetric group.

Keywords

Computational invariant theory Representation theory Permutation group Specht polynomials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdeljaouad, I.: Théorie des Invariants et Applications à la Théorie de Galois effective. Ph.D. thesis, Université Paris 6 (2000)Google Scholar
  2. 2.
    Bergeron, F.: Algebraic combinatorics and coinvariant spaces. CMS Treatises in Mathematics (2009)Google Scholar
  3. 3.
    Borie, N.: Calcul des invariants des groupes de permutations par transformée de Fourier. Ph.D. thesis, Laboratoire de Mathématiques, Université Paris Sud (2011)Google Scholar
  4. 4.
    Colin, A.: Solving a system of algebraic equations with symmetries. J. Pure Appl. Algebra 117/118, 195–215 (1997). algorithms for algebra (Eindhoven, 1996)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Colin, A.: Théorie des invariants effective; Applications à la théorie de Galois et à la résolution de systèmes algébriques; Implantation en AXIOM. Ph.D. thesis, École polytechnique (1997)Google Scholar
  6. 6.
    Sage-Combinat community, T.: Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics (2008)Google Scholar
  7. 7.
    Derksen, H., Kemper, G.: Computational invariant theory. Springer-Verlag, Berlin (2002)zbMATHCrossRefGoogle Scholar
  8. 8.
    Faugère, J., Rahmany, S.: Solving systems of polynomial equations with symmetries using SAGBI-Gröbner bases. In: Proceedings of the 2009 international symposium on Symbolic and algebraic computation, pp. 151–158 (2009)Google Scholar
  9. 9.
    The GAP Group: Lehrstuhl D für Mathematik, RWTH Aachen, Germany and SMCS, U. St. Andrews, Scotland: GAP - Groups, Algorithms, and Programming (1997)Google Scholar
  10. 10.
    Garsia, A., Stanton, D.: Group actions on stanley-reisner rings and invariants of permutation groups. Advances in Mathematics 51(2), 107–201 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Gatermann, K.: Symbolic solution of polynomial equation systems with symmetry. Konrad-Zuse-Zentrum für Informationstechnik, Berlin (1990)Google Scholar
  12. 12.
    Geissler, K., Klüners, J.: Galois group computation for rational polynomials. J. Symbolic Comput. 30(6), 653–674 (2000). algorithmic methods in Galois theoryzbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Kemper, G.: The invar package for calculating rings of invariants. IWR Preprint 93–94, University of Heidelberg (1993)Google Scholar
  14. 14.
    King, S.: Fast Computation of Secondary Invariants (2007). Arxiv preprint math/0701270
  15. 15.
    Lascoux, A., Schützenberger, M.P.: Polynômes de Schubert. C. R. Acad. Sci. Paris Sér. I Math. 294(13), 447–450 (1982)zbMATHGoogle Scholar
  16. 16.
    Pouzet, M., Thiéry, N.M.: Invariants algébriques de graphes et reconstruction. C. R. Acad. Sci. Paris Sér. I Math. 333(9), 821–826 (2001)zbMATHCrossRefGoogle Scholar
  17. 17.
    Stanley, R.P.: Invariants of finite groups and their applications to combinatorics. Bull. Amer. Math. Soc. (N.S.) 1(3), 475–511 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Stein, W., et al.: Sage Mathematics Software (Version 3.3). The Sage Development Team (2009). http://www.sagemath.org
  19. 19.
    Sturmfels, B.: Algorithms in invariant theory. Springer-Verlag, Vienna (1993)zbMATHCrossRefGoogle Scholar
  20. 20.
    Terasoma, T., Yamada, H.: Higher Specht polynomials for the symmetric group. Proc. Japan Acad. Ser. A Math. Sci. 69(2), 41–44 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Thiéry, N.M.: Computing minimal generating sets of invariant rings of permutation groups with SAGBI-Gröbner basis. In: Discrete models (Paris, 2001), pp. 315–328 (electronic) (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratoire d’Informatique Gaspard MongeUniversité Paris Est á Marne-La-ValléeChamps-sur-marneFrance

Personalised recommendations