Advertisement

Unbordered Pictures: Properties and Construction

  • Marcella Anselmo
  • Dora Giammarresi
  • Maria MadoniaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9270)

Abstract

The notion of unbordered picture generalizes to two dimensions the notion of unbordered (or bifix-free) string. We extend to two dimensions Nielsen’s construction of unbordered strings ([23]) and describe an algorithm to construct the set U(mn) of unbordered pictures of fixed size (mn). The algorithm recursively computes the set of quasi-unbordered pictures Q(mn), i.e. pictures that can possibly have some “large” borders.

Keywords

Bifix-free strings Unbordered pictures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aigrain, P., Beauquier, D.: Polyomino tilings, cellular automata and codicity. Theoretical Computer Science 147, 165–180 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Anselmo, M., Giammarresi, D., Madonia, M.: Deterministic and unambiguous families within recognizable two-dimensional languages. Fund. Inform. 98(2–3), 143–166 (2010)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Anselmo, M., Giammarresi, D., Madonia, M.: Strong prefix codes of pictures. In: Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS, vol. 8080, pp. 47–59. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Anselmo, M., Giammarresi, D., Madonia, M., Restivo, A.: Unambiguous recognizable two-dimensional languages. RAIRO -ITA 40(2), 227–294 (2006)MathSciNetGoogle Scholar
  5. 5.
    Anselmo, M., Giammarresi, D., Madonia, M.: A computational model for tiling recognizable two-dimensional languages. Theor. Comput. Sci. 410(37), 3520–3529 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Anselmo, M., Giammarresi, D., Madonia, M.: Prefix picture codes: a decidable class of two-dimensional codes. Int. J. Found. Comput. Sci. 25(8), 1017–1032 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bajic, D., Loncar-Turukalo, T.: A simple suboptimal construction of cross-bifix-free codes. Cryptography and Communications 6(1), 27–37 (2014)zbMATHCrossRefGoogle Scholar
  8. 8.
    Beauquier, D., Nivat, M.: A codicity undecidable problem in the plane. Theoret. Comp. Sci 303, 417–430 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press (2009)Google Scholar
  10. 10.
    Bilotta, S., Pergola, E., Pinzani, R.: A new approach to cross-bifix-free sets. IEEE Transactions on Information Theory 58(6), 4058–4063 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: SWAT (FOCS), pp. 155–160 (1967)Google Scholar
  12. 12.
    Bozapalidis, S., Grammatikopoulou, A.: Picture codes. RAIRO - ITA 40(4), 537–550 (2006)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Chee, Y.M., Kiah, H.M., Purkayastha, P., Wang, C.: Cross-bifix-free codes within a constant factor of optimality. IEEE Transactions on Information Theory 59(7), 4668–4674 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Crochemore, M., Iliopoulos, C.S., Korda, M.: Two-dimensional prefix string matching and covering on square matrices. Algorithmica 20(4), 353–373 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Crochemore, M., Rytter, W.: Jewels of stringology. World Scientific (2002). http://www-igm.univ-mlv.fr/ mac/JOS/JOS.html
  16. 16.
    Gamard, G., Richomme, G.: Coverability in two dimensions. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 402–413. Springer, Heidelberg (2015) Google Scholar
  17. 17.
    Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. Journal. Pattern Recognition and Artificial Intelligence 6(2–3), 241–256 (1992)CrossRefGoogle Scholar
  18. 18.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G.(ed.) Handbook of Formal Languages, vol. III, pp. 215–268. Springer Verlag (1997)Google Scholar
  19. 19.
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology. Cambridge University Press (1997)Google Scholar
  20. 20.
    Kari, J., Salo, V.: A survey on picture-walking automata. In: Kuich, W., Rahonis, G. (eds.) Algebraic Foundations in Computer Science. LNCS, vol. 7020, pp. 183–213. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  21. 21.
    Kolarz, M., Moczurad, W.: Multiset, set and numerically decipherable codes over directed figures. In: Smyth, B. (ed.) IWOCA 2012. LNCS, vol. 7643, pp. 224–235. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  22. 22.
    Na, J.C., Ferragina, P., Giancarlo, R., Park, K.: Indexed two-dimensional string matching. In: Encyclopedia of Algorithms (2015)Google Scholar
  23. 23.
    Nielsen, P.T.: A note on bifix-free sequences (corresp.). IEEE Transactions on Information Theory 19(5), 704–706 (1973)zbMATHCrossRefGoogle Scholar
  24. 24.
    Otto, F., Mráz, F.: Extended two-way ordered restarting automata for picture languages. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 541–552. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  25. 25.
    Pradella, M., Cherubini, A., Crespi-Reghizzi, S.: A unifying approach to picture grammars. Inf. Comput. 209(9), 1246–1267 (2011)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marcella Anselmo
    • 1
  • Dora Giammarresi
    • 2
  • Maria Madonia
    • 3
    Email author
  1. 1.Dipartimento di InformaticaUniversità di SalernoFiscianoItaly
  2. 2.Dipartimento di MatematicaUniversità Roma “Tor Vergata”RomaItaly
  3. 3.Dipartimento di Matematica e InformaticaUniversità di CataniaCataniaItaly

Personalised recommendations