Skip to main content

Numerical Analysis of Optimality-System POD for Constrained Optimal Control

  • Chapter
Recent Trends in Computational Engineering - CE2014

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 105))

Abstract

In this work linear-quadratic optimal control problems for parabolic equations with control and state constraints are considered. Utilizing a Lavrentiev regularization we obtain a linear-quadratic optimal control problem with mixed control-state constraints. For the numerical solution a Galerkin discretization is applied utilizing proper orthogonal decomposition (POD). Based on a perturbation method it is determined by a-posteriori error analysis how far the suboptimal control, computed on the basis of the POD method, is from the (unknown) exact one. POD basis updates are computed by optimality-system POD. Numerical examples illustrate the theoretical results for control and state constrained optimal control problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Acknowledgement

  1. Arian, E., Fahl, M., Sachs, E.W.: Trust-region proper orthogonal decomposition for flow control. Technical Report 2000-25, ICASE (2000)

    Google Scholar 

  2. Benner, P., Mehrmann, V., Sorensen, D.C.: Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45. Springer, Berlin (2005)

    Google Scholar 

  3. Chapelle, D., Gariah, A., Saint-Marie, J.: Galerkin approximation with proper orthogonal decomposition: new error estimates and illustrative examples. ESAIM: Math. Model. Numer. Anal. 46, 731–757 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology. Volume 5: Evolution Problems I. Springer, Berlin (2000)

    Google Scholar 

  5. Dontchev, A.L., Hager, W.W., Poore, A.B., Yang, B.: Optimality, stability, and convergence in nonlinear control. Appl. Math. Optim. 31, 297–326 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Grimm, E.: Optimality system POD and a-posteriori error analysis for linear-quadratic optimal control problems. Master Thesis, University of Konstanz (2013). https://kops.uni-konstanz.de/handle/123456789/27761

  7. Gubisch, M., Volkwein, S.: Proper orthogonal decomposition for linear-quadratic optimal control. (2013, submitted). http://kops.uni-konstanz.de/handle/123456789/25037

  8. Gubisch, M., Volkwein, S.: POD a-posteriori error analysis for optimal control problems with mixed control-state constraints. Comput. Optim. Appl. 58, 619–644 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2003)

    Article  MATH  Google Scholar 

  10. Hintermüller, M., Kopacka, I., Volkwein, S.: Mesh-independence and preconditioning for solving control problems with mixed control-state constraints. ESAIM: Control Optim. Calc. Var. 15, 626–652 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge Monographs on Mechanics, 2nd edn. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  12. Hinze, M., Volkwein, S.: Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control. Chapter 10 of [2]

    Google Scholar 

  13. Hinze, M., Volkwein, S.: Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Comput. Optim. Appl. 39, 319–345 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer, Berlin (2009)

    MATH  Google Scholar 

  15. Kelley, C.T.: Iterative Methods for Optimization. SIAM Frontiers in Applied Mathematics, Philadelphia (1999)

    Book  MATH  Google Scholar 

  16. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40, 492–515 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kunisch, K., Volkwein, S.: Proper orthogonal decomposition for optimality systems. ESAIM: Math. Model. Numer. Anal. 42, 1–23 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Müller, M.: Uniform convergence of the POD method and applications to optimal control. Ph.D Thesis, University of Graz (2011)

    Google Scholar 

  19. Schilders, W.H.A., van der Vorst, H.A., Rommes, J.: Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry, vol. 13. Springer, Berlin (2008)

    Google Scholar 

  20. Singler, J.R.: New POD expressions, error bounds, and asymptotic results for reduced order models of parabolic PDEs. SIAM J. Numer. Anal. 52, 852–876 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Strikwerda, J.: Finite Difference Schemes and Partial Differential Equations. SIAM, Philadelphia (2004)

    Book  MATH  Google Scholar 

  22. Studinger, A., Volkwein, S.: Numerical analysis of POD a-posteriori error estimation for optimal control. Int. Ser. Numer. Math. 164, 137–158 (2013)

    Google Scholar 

  23. Tröltzsch, F.: Regular Lagrange multipliers for control problems with mixed pointwise control-state constraints. SIAM J. Optim. 22, 616–634 (2005)

    Article  Google Scholar 

  24. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications, vol. 112. American Mathematical Society, Providence (2010)

    Google Scholar 

  25. Tröltzsch, F., Volkwein, S.: POD a-posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl. 44, 83–115 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Volkwein, S.: Optimality system POD and a-posteriori error analysis for linear-quadratic problems. Control. Cybern. 40, 1109–1125 (2011)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG project A-Posteriori-POD Error Estimators for Nonlinear Optimal Control Problems governed by Partial Differential Equations, grant VO 1658/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Volkwein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grimm, E., Gubisch, M., Volkwein, S. (2015). Numerical Analysis of Optimality-System POD for Constrained Optimal Control. In: Mehl, M., Bischoff, M., Schäfer, M. (eds) Recent Trends in Computational Engineering - CE2014. Lecture Notes in Computational Science and Engineering, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-319-22997-3_18

Download citation

Publish with us

Policies and ethics