Skip to main content

Coupled Multi-Field Continuum Methods for Porous Media Fracture

  • Chapter
Book cover Recent Trends in Computational Engineering - CE2014

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 105))

Abstract

The focus of the present contribution is on the numerical modelling of hydraulic fracture in fluid-saturated heterogeneous materials, which can be carried out on a macroscopic scale using extended continuum porous media theories. This accounts for the crack nucleation and propagation, deformation of the solid matrix and change in the flow of the interstitial fluid. In particular, fluid-saturated porous materials basically represent volumetrically interacting solid-fluid aggregates, which are modelled using the Theory of Porous Media. The hydraulic- or tension-induced fracture occurs in the solid matrix and is simulated using a diffusive phase-field modelling approach. This way of fracture treatment adds a partial differential equation of the phase-field evolution to the coupled solid-fluid problem, which requires special stabilisation techniques in the numerical calculation. A numerical example is also presented to demonstrate this way of fracture handling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a scalar value a, the Heaviside step function \(H(a) =\{\, 0\,\,\,\mbox{ if}\,\,\,a < 0,\,\,\mbox{ and}\,\,\,1\,\,\,\mbox{ if}\,a \geq 0\}\).

  2. 2.

    A software for FE solutions of partial differential equations, see www.pdesolutions.com.

References

  1. Alber, H., Markert, B.: Second order asymptotics for the propagation speed of interfaces in the allen-cahn phase field model for elastic solids. PAMM 12, 31–34 (2012)

    Article  Google Scholar 

  2. Allen, S., Cahn, J.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta. Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  3. de Boer, R.: Theory of Porous Media. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  4. de Borst, R., Réthoré, J., Abellan, M.: A two-scale approach for fluid flow in fracturing porous media. In: Bicanic, N., de Borst, R., Mang, H., Meschke, G. (eds.) Computational Modelling of Concrete Structures, pp. 451–460. Taylor and Francis, London (2010)

    Chapter  Google Scholar 

  5. Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J.R., Landis, C.M.: A phase-field description of dynamic brittle fracture. Comput. Method. Appl. Mech. 217–220, 77–95 (2012)

    Article  MathSciNet  Google Scholar 

  6. Bourdin, B., Francfort, G., Marigo, J.: The variational approach to fracture. J. Elast. 91, 5–148 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Detournay, E., Cheng, A.H.: Plane strain analysis of a stationary hydraulic fracture in a poroelastic medium. Int. J. Solids Struct. 27, 1645–1662 (1991)

    Article  MATH  Google Scholar 

  8. Ehlers, W.: Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 3–86. Springer, Berlin (2002)

    Chapter  Google Scholar 

  9. Ehlers, W.: Challenges of porous media models in geo- and biomechanical engineering including electro-chemically active polymers and gels. Int. J. Adv. Eng. Sci. Appl. Math. 1, 1–24 (2009)

    Article  Google Scholar 

  10. Francfort, G., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids. 46, 1319–1342 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A 221, 163–198 (1921)

    Article  Google Scholar 

  12. Heider, Y., Markert, B., Ehlers, W.: Dynamic wave propagation in infinite saturated porous media half spaces. Comput. Mech. 49, 319–336 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Heider, Y., Avci, O., Markert, B., Ehlers, W.: The dynamic response of fluid-saturated porous materials with application to seismically induced soil liquefaction. Soil Dyn. Earthq. Eng. 63, 120–137 (2014)

    Article  Google Scholar 

  14. Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  15. Kuhn, C., Müller, R.: A continuum phase field model for fracture. Eng. Fract. Mech. 77, 3625–3634 (2010)

    Article  Google Scholar 

  16. Li, L., Tang, C., Li, G., Wang, S., Liang, Z., Zhang, Y.: Numerical simulation of 3d hydraulic fracturing based on an improved flow-stress-damage model and a parallel fem technique. Rock Mech. Rock Eng. 45, 801–818 (2012)

    Google Scholar 

  17. Markert, B.: A constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continua. Transp. Porous Med. 70, 427–450 (2007)

    Article  MathSciNet  Google Scholar 

  18. Markert, B., Heider, Y.: Diffusive porous media fracture. (2015, submitted)

    Google Scholar 

  19. Markert, B., Heider, Y., Ehlers, W.: Comparison of monolithic and splitting solution schemes for dynamic porous media problem. Int. J. Numer. Meth. Eng. 82, 1341–1383 (2010)

    MATH  MathSciNet  Google Scholar 

  20. Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Method. Appl. Mech. 199, 2765–2778 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mikelic, A., Wheeler, M.F., Wick, T.: A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. In: ICES REPORT 14-08, The Institute for Computational Engineering and Sciences, The University of Texas at Austin (2014)

    Google Scholar 

  22. Moes, N., Belytschko, T.: Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69, 813–833 (2002)

    Article  Google Scholar 

  23. Remmers, J., de Borst, R., Needleman, A.: A cohesive segments method for the simulation of crack growth. Comput. Mech. 31, 69–77 (2003)

    Article  MATH  Google Scholar 

  24. Schlüter, A., Willenbücher, A., Kuhn, C., Müller, R.: Phase field approximation of dynamic brittle fracture. Comput. Mech. 54, 1141–1161 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. Secchi, S., Simoni, L., Schrefler, B.A.: Mesh adaptation and transfer schemes for discrete fracture propagation in porous materials. Int. J. Numer. Anal. Methods 31, 331–345 (2007)

    Article  MATH  Google Scholar 

  26. Secchi, S., Simoni, L., Schrefler, B.A.: Hydraulic fracturing and its peculiarities. Asia Pac. J. Comput. Eng. (2014). doi:10.1186/2196–1166–1–8

    Google Scholar 

  27. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. The Basis, vol. 1, 5th edn. Butterworth Heinemann, Oxford (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Markert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Markert, B., Heider, Y. (2015). Coupled Multi-Field Continuum Methods for Porous Media Fracture. In: Mehl, M., Bischoff, M., Schäfer, M. (eds) Recent Trends in Computational Engineering - CE2014. Lecture Notes in Computational Science and Engineering, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-319-22997-3_10

Download citation

Publish with us

Policies and ethics