Skip to main content

Abstract

Transmission electron microscopy (TEM) offers high spatial and temporal resolution that provides unique information for understanding the function and properties of nanostructures on their characteristic length scales. Under controlled environmental conditions and with the ability to dynamically influence the sample by external stimuli, e.g. through electrical connections, the TEM becomes a powerful laboratory for performing quantitative real time in situ experiments. Such TEM setups enable the characterization of nanostructures and nanodevices under working conditions, thereby providing a deeper understanding of complex physical and chemical interactions in the pursuit to optimize nanostructure function and device performance. Recent developments of sample holder technology for TEM have enabled a new field of research in the study of functional nanomaterials and devices via electrical stimulation and measurement of the specimen. Recognizing the benefits of electrical measurements for in situ TEM, many research groups have focused their effort in this field and some of these methods have transferred to ETEM. This chapter will describe recent advances in the in situ TEM investigation of nanostructured materials and devices with the specimen being contacted by electrical, mechanical or other means, with emphasis on in situ electrical measurements performed in a gaseous or liquid environment. We will describe the challenges and prospects of electrical characterization of devices and processes induced by a voltage in gas and liquids. We will also provide a historical perspective of in situ TEM electrical measurements and applications using electrical contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • I.M. Abrams, J.W. McBain, A closed cell for electron microscopy. J Appl Phys 15(8), 607 (1944). doi:10.1063/1.1707475

    Article  Google Scholar 

  • M. Ahmad, C. Pan, J. Zhao, J. Iqbal, J. Zhu, Electron irradiation effect and photoluminescence properties of ZnO-tetrapod nanostructures. Mater Chem Phys 120(2-3), 319–322 (2010). doi:10.1016/j.matchemphys.2009.11.015

    Article  Google Scholar 

  • S.B. Alam, E. Jensen, F.M. Ross, O. Hansen, A. Burrows, K. Mølhave, Suspended microsystems for in-situ TEM studies of processes in gases and liquids. Microsc Microanal 19(S2), 402–403 (2013). doi:10.1017/S1431927613004005

    Google Scholar 

  • M. Arita, R. Tokuda, K. Hamada, Y. Takahashi, Development of TEM holder generating in-plane magnetic field used for in-situ TEM observation. Mater Trans 55(3), 403–409 (2014). doi:10.2320/matertrans.md201310

    Google Scholar 

  • A. Asthana, K. Momeni, A. Prasad, Y.K. Yap, R.S. Yassar, In situ probing of electromechanical properties of an individual ZnO nanobelt. Appl Phys Lett 95(17), 172106 (2009). doi:10.1063/1.3241075

    Article  Google Scholar 

  • G.E. Begtrup, K.G. Ray, B.M. Kessler, T.D. Yuzvinsky, H. Garcia, A. Zettl, Probing nanoscale solids at thermal extremes. Phys Rev Lett 99(15), 239904 (2007)

    Article  Google Scholar 

  • I.A. Blech, E.S. Meieran, Direct transmission electron microscope observation of electrotransport in aluminum thin films. Appl Phys Lett 11(8), 263–266 (1967). doi:10.1063/1.1755127

    Article  Google Scholar 

  • I.A. Blech, E.S. Meieran, Electromigration in thin Al films. J Appl Phys 40(2), 485–491 (1969). doi:10.1063/1.1657425

    Article  Google Scholar 

  • E.P. Butler, In situ experiments in the transmission electron microscope. Rep Prog Phys 42(5), 833–895 (1979). doi:10.1088/0034-4885/42/5/002

    Article  Google Scholar 

  • F. Cavalca, A.B. Laursen, J.B. Wagner, C.D. Damsgaard, I. Chorkendorff, T.W. Hansen, Light-induced reduction of cuprous oxide in an environmental transmission electron microscope. Chemcatchem 5(9), 2667–2672 (2013)

    Article  Google Scholar 

  • C.Y. Chang, V.D. Vankar, Y.C. Lee, R.W. Vook, A.J. Patrinos, J.A. Schwarz, Electromigration studies using in situ TEM electrical resistance measurements. Vacuum 41(4-6), 1434–1436 (1990)

    Article  Google Scholar 

  • S.W. Chee, S.H. Pratt, K. Hattar, D. Duquette, F.M. Ross, R. Hull, Studying localized corrosion using liquid cell transmission electron microscopy. Chem Commun 51(1), 168–171 (2015). doi:10.1039/c4cc06443g

    Article  Google Scholar 

  • K.-C. Chen, C.-N. Liao, W.-W. Wu, L.-J. Chen, Direct observation of electromigration-induced surface atomic steps in Cu lines by in situ transmission electron microscopy. Appl Phys Lett 90(20), 203101 (2007)

    Article  Google Scholar 

  • J.F. Creemer, S. Helveg, P.J. Kooyman, A.M. Molenbroek, H.W. Zandbergen, P.M. Sarro, A MEMS Reactor for Atomic-Scale Microscopy of Nanomaterials Under Industrially Relevant Conditions. J Microelectromech Syst 19(2), 254–264 (2010)

    Article  Google Scholar 

  • N. de Jonge, F.M. Ross, Electron microscopy of specimens in liquid. Nat Nanotechnol 6, 695–704 (2011). doi:10.1038/nnano.2011.161

    Article  Google Scholar 

  • D. Gabor, A new microscopic principle. Nature 161, 777–778 (1948)

    Article  Google Scholar 

  • R. Gao, Z. Pan, Z.L. Wang, Work function at the tips of multiwalled carbon nanotubes. Appl Phys Lett 78(12), 1757–1759 (2001). doi:10.1063/1.1356442

    Article  Google Scholar 

  • B. Gao, M. Rudneva, K.S. McGarrity, Q. Xu, F. Prins, J.M. Thijssen, H. Zandbergen, H.S.J. Van Der Zant, In situ transmission electron microscopy imaging of grain growth in a platinum nanobridge induced by electric current annealing. Nanotechnology 22(20), 205705 (2011). doi:10.1088/0957-4484/22/20/205705

    Article  Google Scholar 

  • H. Ghassemi, M. Au, N. Chen, P.A. Heiden, R.S. Yassar, In situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods. ACS Nano 5(10), 7805–7811 (2011). doi:10.1021/nn2029814

    Article  Google Scholar 

  • D. Golberg, M. Mitome, K. Kurashima, C.Y. Zhi, C.C. Tang, Y. Bando, O. Lourie, In situ electrical probing and bias-mediated manipulation of dielectric nanotubes in a high-resolution transmission electron microscope. Appl Phys Lett 88(12), 123101 (2006)

    Article  Google Scholar 

  • M. Gu, L.R. Parent, B.L. Mehdi, R.R. Unocic, M.T. McDowell, R.L. Sacci, W. Xu, J.G. Connell, P. Xu, P. Abellan, X. Chen, Y. Zhang, D.E. Perea, J.E. Evans, L.J. Lauhon, J.G. Zhang, J. Liu, N.D. Browning, Y. Cui, I. Arslan, C.M. Wang, Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett 13(12), 6106–6112 (2013). doi:10.1021/nl403402q

    Article  Google Scholar 

  • K. He, J.-H. Cho, Y. Jung, Silicon nanowires: electron holography studies of doped p-n junctions and biased Schottky barriers. Nanotechnology 24(11), 115703 (2013)

    Article  Google Scholar 

  • H.B. Heersche, L. Gn, K. O'Neill, H.S.J. Van Der Zant, H.W. Zandbergen, In situ imaging of electromigration-induced nanogap formation by transmission electron microscopy. Appl Phys Lett 91(7), 072107 (2007). doi:10.1063/1.2767149

    Article  Google Scholar 

  • S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Norskov, Atomic-scale imaging of carbon nanofibre growth. Nature 427(6973), 426–429 (2004)

    Article  Google Scholar 

  • J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, S.X. Mao, N.S. Hudak, X.H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, J. Li, In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010), 1515–1520 (2010). doi:10.1126/science.1195628

    Article  Google Scholar 

  • E. Jensen, C. Købler, P.S. Jensen, K. Mølhave, E. Jensen, C. Købler, P.S. Jensen, K. Mølhave, In-situ SEM microchip setup for electrochemical experiments with water based solutions. Ultramicroscopy 129, 63–69 (2013). doi:10.1016/j.ultramic.2013.03.002

    Article  Google Scholar 

  • E. Jensen, A. Burrows, K. Mølhave, Monolithic chip system with a microfluidic channel for in situ electron microscopy of liquids. Microsc Microanal 20(2), 445–451 (2014). doi:10.1017/s1431927614000300

    Article  Google Scholar 

  • C. Kallesøe, C.-Y. Wen, T.J. Booth, O. Hansen, P. Bøggild, F.M. Ross, K. Mølhave, In situ TEM creation and electrical characterization of nanowire devices. Nano Lett 12(6), 2965–2970 (2012). doi:10.1021/nl300704u

    Article  Google Scholar 

  • A. Kolmakov, D.A. Dikin, L.J. Cote, J.X. Huang, M.K. Abyaneh, M. Amati, L. Gregoratti, S. Gunther, M. Kiskinova, Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. Nat Nanotechnol 6(10), 651–657 (2011). doi:10.1038/Nnano.2011.130

    Article  Google Scholar 

  • T. Kozlova, M. Rudneva, H.W. Zandbergen, In situ TEM and STEM studies of reversible electromigration in thin palladium-platinum bridges. Nanotechnology 24(50), 505708 (2013). doi:10.1088/0957-4484/24/50/505708

    Article  Google Scholar 

  • A. Kushima, J.Y. Huang, J. Li, Quantitative fracture strength and plasticity measurements of Lithiated silicon nanowires by in situ TEM tensile experiments. ACS Nano 6(11), 209425–209432 (2012). doi:10.1021/nn3037623

    Article  Google Scholar 

  • T. Kuzumaki, H. Sawada, H. Ichinose, Y. Horiike, T. Kizuka, Selective processing of individual carbon nanotubes using dual-nanomanipulator installed in transmission electron microscope. Appl Phys Lett 79(27), 4580–4582 (2001). doi:10.1063/1.1430022

    Article  Google Scholar 

  • D. Li, M.H. Nielsen, J.R.I. Lee, C. Frandsen, J.F. Banfield, J.J. De Yoreo, Direction-specific interactions control crystal growth by oriented attachment. Science 336(6084), 1014–1018 (2012). doi:10.1126/science.1219643

    Article  Google Scholar 

  • H.-G. Liao, L. Cui, S. Whitelam, H. Zheng, Real-time imaging of Pt3Fe Nanorod growth in solution. Science 336(6084), 1011–1014 (2012). doi:10.1126/science.1219185

    Article  Google Scholar 

  • C.K. Lim, G. Yi, J.N. Chapman, W.A.P. Nicholson, S. McVitie, C.D.W. Wilkinson, TEM studies of the switching characteristics of small permalloy elements as a function of field orientation. J Phys D Appl Phys 36(24), 3099–3102 (2003). doi:10.1088/0022-3727/36/24/001

    Article  Google Scholar 

  • K.H. Liu, W.L. Wang, Z. Xu, L. Liao, X.D. Bai, E.G. Wang, In situ probing mechanical properties of individual tungsten oxide nanowires directly grown on tungsten tips inside transmission electron microscope. Appl Phys Lett 89(22), 221908 (2006)

    Article  Google Scholar 

  • X. Liu, J. Zhu, C. Jin, L.-M. Peng, D. Tang, H. Cheng, In situ electrical measurements of polytypic silver nanowires. Nanotechnology 19(8), 085711 (2008). doi:10.1088/0957-4484/19/8/085711

    Article  Google Scholar 

  • X.H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L.Q. Zhang, Y. Liu, A. Kushima, W.T. Liang, J.W. Wang, J.H. Cho, E. Epstein, S.A. Dayeh, S.T. Picraux, T. Zhu, J. Li, J.P. Sullivan, J. Cumings, C. Wang, S.X. Mao, Z.Z. Ye, S. Zhang, J.Y. Huang, Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett 11(8), 3312–3318 (2011). doi:10.1021/nl201684d

    Article  Google Scholar 

  • X.H. Liu, Y. Liu, A. Kushima, S. Zhang, T. Zhu, J. Li, J.Y. Huang, In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv Energy Mater 2 (7), 722–741 (2012). doi:10.1002/aenm.201200024

    Article  Google Scholar 

  • Y. Lu, C.A. Merchant, M. Drndić, A.T.C. Johnson, In situ electronic characterization of graphene Nanoconstrictions fabricated in a transmission electron microscope. Nano Lett 11(12), 5184–5188 (2011). doi:10.1021/nl2023756

    Article  Google Scholar 

  • B.L. Mehdi, M. Gu, L.R. Parent, W. Xu, E.N. Nasybulin, X. Chen, R.R. Unocic, P. Xu, D.A. Welch, P. Abellan, J.-G. Zhang, J. Liu, C.-M. Wang, I. Arslan, J. Evans, N.D. Browning, In-situ electrochemical transmission electron microscopy for battery research. Microsc Microanal 20(2), 484–492 (2014). doi:10.1017/S1431927614000488

    Article  Google Scholar 

  • P.A. Midgley, R.E. Dunin-Borkowski, P.A. Midgley, R.E. Dunin-Borkowski, Electron tomography and holography in materials science. Nat Mater 8(4), 271–280 (2009). doi:10.1038/nmat2406

    Article  Google Scholar 

  • B.K. Miller, P.A. Crozier, System for in situ UV-visible illumination of environmental transmission electron microscopy samples. Microsc Microanal 19(2), 461–469 (2013). doi:10.1017/S1431927612014122

    Article  Google Scholar 

  • K. Molhave, S.B. Gudnason, A.T. Pedersen, C.H. Clausen, A. Horsewell, P. Boggild, Electron irradiation-induced destruction of carbon nanotubes in electron microscopes. Ultramicroscopy 108(1), 52–57 (2007). doi:10.1016/j.ultramic.2007.03.001

    Article  Google Scholar 

  • C.-Y. Nam, P. Jaroenapibal, D. Tham, D.E. Luzzi, S. Evoy, J.E. Fischer, Diameter-dependent electromechanical properties of GaN nanowires. Nano Lett 6(2), 153–158 (2006)

    Article  Google Scholar 

  • H. Ohnishi, Y. Kondo, K. Takayanagi, Quantized conductance through individual rows of suspended gold atoms. Nature 395(6704), 780–783 (1998). doi:10.1038/27399

    Article  Google Scholar 

  • M.L.B. Palacio, B. Bhushan, Depth-sensing indentation of nanomaterials and nanostructures. Mater Charact 78, 1–20 (2013)

    Article  Google Scholar 

  • N. Petkov, In situ real-time TEM reveals growth, transformation and function in one-dimensional nanoscale materials: from a nanotechnology perspective. ISRN Nanotechnol 2013, 1–21 (2013). doi:10.1155/2013/893060

    Article  Google Scholar 

  • P. Poncharal, S. Frank, Z.L. Wang, W.A. De Heer, Conductance quantization in multiwalled carbon nanotubes. Eur Phys J D 9(1-4), 77–79 (1999a)

    Google Scholar 

  • P. Poncharal, Z.L. Wang, D. Ugarte, W.A. De Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407), 1513–1516 (1999b). doi:10.1126/science.283.5407.1513

    Article  Google Scholar 

  • P. Poncharal, C. Berger, Y. Yi, Z.L. Wang, W.A. de Heer, Room temperature ballistic conduction in carbon nanotubes. J Phys Chem B 106(47), 12104–12118 (2002). doi:10.1021/jp021271u

    Article  Google Scholar 

  • A. Radisic, P.M. Vereecken, J.B. Hannon, P.C. Searson, F.M. Ross, Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett 6(2), 238–242 (2006)

    Article  Google Scholar 

  • R. Rodwell, D.A. Worrall, Quality control in ultrasonic wire bonding. Microelect Int 2(3), 67–72 (1985). doi:10.1108/eb044187

    Article  Google Scholar 

  • F.M. Ross, Controlling nanowire structures through real time growth studies. Rep Prog Phys 73(11), 114501 (2010). doi:10.1088/0034-4885/73/11/114501

    Article  Google Scholar 

  • N.M. Schneider, M.M. Norton, B.J. Mendel, J.M. Grogan, F.M. Ross, H.H. Bau, Electron-water interactions and implications for liquid cell electron microscopy. J Phys Chem C 118(38), 22373–22382 (2014). doi:10.1021/jp507400n

    Article  Google Scholar 

  • D. Shindo, K. Takahashi, Y. Murakami, K. Yamazaki, S. Deguchi, H. Suga, Y. Kondo, Development of a multifunctional TEM specimen holder equipped with a piezodriving probe and a laser irradiation port. J Electron Microsc (Tokyo) 58(4), 245–249 (2009). doi:10.1093/jmicro/dfp018

    Article  Google Scholar 

  • J. Silcox, Magnetic domain walls in thin films of nickel and cobalt. Philos Mag 8(85), 7–28 (1963)

    Article  Google Scholar 

  • P. Sofronis, I.M. Robertson, Transmission electron microscopy observations and micromechanical/continuum models for the effect of hydrogen on the mechanical behaviour of metals. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 82(17-18), 3405–3413 (2002)

    Google Scholar 

  • Q. Su, L. Chang, J. Zhang, G. Du, B. Xu, In situ TEM observation of the electrochemical process of individual CeO2/graphene anode for lithium Ion battery. J Phys Chem C 117(8), 204292–204298 (2013). doi:10.1021/jp312169j

    Article  Google Scholar 

  • X.L. Tan, H. He, J.K. Shang, In situ transmission electron microscopy studies of electric-field-induced phenomena in ferroelectrics. J Mater Res 20(7), 1641–1653 (2005). doi:10.1557/JMR.2005.0213

    Article  Google Scholar 

  • A.H. Tavabi, Z. Yasenjiang, T. Tanji, In situ off-axis electron holography of metal-oxide hetero-interfaces in oxygen atmosphere. J Electron Microsc (Tokyo) 60(5), 307–314 (2011). doi:10.1093/jmicro/dfr056

    Article  Google Scholar 

  • K.J. Terhune, L.B. King, K. He, J. Cumings, In Situ Study of Ionic Liquid Taylor Cones Using Electron Microscopy, in 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, California, 2013. American Institute of Aeronautics and Astronautics

    Google Scholar 

  • J.M. Titchmarsh, A.J. Lapworth, G.R. Booker, A new method for investigating the electric field regions of p-n junctions. Phys Status Solidi 34(2), K83–K86 (1969)

    Article  Google Scholar 

  • A.C. Twitchett, R.E. Dunin-Borkowski, P.A. Midgley, Quantitative electron holography of biased semiconductor devices. Phys Rev Lett 88(23), 2383021–2383024 (2002)

    Article  Google Scholar 

  • A.C. Twitchett, R.E. Dunin-Borkowski, P.A. Midgley, Comparison of off-axis and in-line electron holography as quantitative dopant-profiling techniques. Philos Mag 86(36), 5805–5823 (2006). doi:10.1080/14786430600815385

    Article  Google Scholar 

  • A.C. Twitchett, T.J.V. Yates, S.B. Newcomb, R.E. Dunin-Borkowski, P.A. Midgley, A.C. Twitchett, T.J.V. Yates, S.B. Newcomb, R.E. Dunin-Borkowski, P.A. Midgley, High-resolution three-dimensional mapping of semiconductor dopant potentials. Nano Lett 7(7), 2020–2023 (2007). doi:10.1021/nl070858n

    Article  Google Scholar 

  • R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4 (5), 89–90 (1964). doi:10.1063/1.1753975

    Article  Google Scholar 

  • J.B. Wagner, F. Cavalca, C.D. Damsgaard, L.D.L. Duchstein, T.W. Hansen, P.A.C. Renu Sharma, Exploring the environmental transmission electron microscope. Micron 43(11), 1169–1175 (2012). doi:10.1016/j.micron.2012.02.008

    Article  Google Scholar 

  • Z.L. Wang, Properties of nanobelts and nanotubes measured by in situ TEM. Microsc Microanal 10(1), 158–166 (2004). doi:10.1017/S1431927604040371

    Article  Google Scholar 

  • Z.L. Wang, P. Poncharal, W.A. de Heer, Nanomeasurements in transmission electron microscopy. Microsc Microanal 6(3), 224–230 (2000)

    Google Scholar 

  • Z.L. Wang, R.P. Gao, P. Poncharal, W.A. de Heer, Z.R. Dai, Z.W. Pan, Mechanical and electrostatic properties of carbon nanotubes and nanowires. Mater Sci Eng C Biomimetic Supramol Syst C16(1-2), 3–10 (2001)

    Article  Google Scholar 

  • Z.G. Wang, T. Hirayama, K. Sasaki, H. Saka, N. Kato, Electron holographic characterization of electrostatic potential distributions in a transistor sample fabricated by focused ion beam. Appl Phys Lett 80(2), 246–248 (2002). doi:10.1063/1.1432746

    Article  Google Scholar 

  • B. Westenfelder, J.C. Meyer, J. Biskupek, G. Algara-Siller, L.G. Lechner, J. Kusterer, U. Kaiser, C.E. Krill, E. Kohn, F. Scholz, Graphene-based sample supports for in situ high-resolution TEM electrical investigations. J Phys D 44(5), 055502 (2011). doi:10.1088/0022-3727/44/5/055502

    Article  Google Scholar 

  • M.J. Williamson, R.M. Tromp, P.M. Vereecken, R. Hull, F.M. Ross, Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2(8), 532–536 (2003). doi:10.1038/nmat944

    Article  Google Scholar 

  • Z. Xu, In situ TEM study of electric field-induced microcracking in piezoelectric single crystals. Mater Sci Eng B B99(1-3), 106–111 (2003)

    Article  Google Scholar 

  • Z. Xu, X.D. Bai, E.G. Wang, Z.L. Wang, Field emission of individual carbon nanotube with in situ tip image and real work function. Appl Phys Lett 87(16), 163106 (2005)

    Article  Google Scholar 

  • Z. Xu, X.D. Bai, E.G. Wang, Geometrical enhancement of field emission of individual nanotubes studied by in situ transmission electron microscopy. Appl Phys Lett 88(13), 133107 (2006). doi:10.1063/1.2188389

    Article  Google Scholar 

  • Z. Xu, Y. Bando, L. Liu, W. Wang, X. Bai, D. Golberg, Electrical conductivity, chemistry, and bonding alternations under graphene oxide to graphene transition as revealed by in situ TEM. ACS Nano 5(6), 4401–4406 (2011). doi:10.1021/nn103200t

    Article  Google Scholar 

  • J.C. Yang, M.W. Small, R.V. Grieshaber, R.G. Nuzzo, Recent developments and applications of electron microscopy to heterogeneous catalysis. Chem Soc Rev 41(24), 8179–8194 (2012). doi:10.1039/c2cs35371g

    Article  Google Scholar 

  • J.M. Yuk, J. Park, P. Ercius, K. Kim, D.J. Hellebusch, M.F. Crommie, J.Y. Lee, A. Zettl, A.P. Alivisatos, High-resolution EM of colloidal Nanocrystal growth using graphene liquid cells. Science 336(6077), 61–64 (2012). doi:10.1126/science.1217654

    Article  Google Scholar 

  • T.D. Yuzvinsky, A.M. Fennimore, W. Mickelson, C. Esquivias, A. Zettl, Precision cutting of nanotubes with a low-energy electron beam. Appl Phys Lett 86(5), 083103 (2005a)

    Article  Google Scholar 

  • T.D. Yuzvinsky, W. Mickelson, S. Aloni, S.L. Konsek, A.M. Fennimore, G.E. Begtrup, A. Kis, B.C. Regan, A. Zettl, Imaging the life story of nanotube devices. Appl Phys Lett 87(8) (2005b)

    Google Scholar 

  • J. Zhao, H. Sun, S. Dai, Y. Wang, J. Zhu, Electrical breakdown of nanowires. Nano Lett 11(11), 4647–4651 (2011). doi:10.1021/nl202160c

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Mølhave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Canepa, S., Alam, S.B., Ngo, DT., Ross, F.M., Mølhave, K. (2016). In Situ TEM Electrical Measurements. In: Hansen, T., Wagner, J. (eds) Controlled Atmosphere Transmission Electron Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-319-22988-1_10

Download citation

Publish with us

Policies and ethics