Advertisement

Biomimicry of the Manduca Sexta Forewing Using SRT Protein Complex for FWMAV Development

  • Simone C. MichaelsEmail author
  • Kenneth C. Moses
  • Richard J. Bachmann
  • Reginald Hamilton
  • Abdon Pena-Francesch
  • Asheesh Lanba
  • Melik C. Demirel
  • Roger D. Quinn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9222)

Abstract

A new thermoplastic protein complex, Squid Ring Teeth (SRT), has been adapted for use in the artificial reconstruction of a Manduca sexta wing. The SRT protein complex exhibits consistent material properties over a wide range of temperatures (25°C to 196°C) and retains it mechanical integrity across a large frequency spectrum (0.1 Hz to 150 Hz). Insect-inspired wings comprised of SRT can therefore be reliable and robust, which are essential characteristics for flapping wing MAVs (FWMAV). The preliminary results in this paper suggest that a thorough analysis of an SRT-based wing be conducted using load cell, optical digitization, and PIV techniques. With these results, we believe it will be possible to accurately mimic the M. sexta wing in order to pave the way for next generation FWMAV development.

Keywords

Protein Wing FWMAV Biomaterial Manduca sexta Hawkmoth Biomimicry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansari, S.A., Zbikowski, R., Knowles, K.: Aerodynamic modelling of insect-like flapping flight for micro air vehicles. Prog. Aerosp. Sci. 42(2), 129–172 (2006)CrossRefGoogle Scholar
  2. 2.
    Combes, S.: Materials, structure, and dynamics of insect wings as bioinspiration for MAVs. Encycl. Aerosp. Eng., 1–10 (2010)Google Scholar
  3. 3.
    Ennos, A.R.: Inertial and aerodynamic torques on the wings of diptera in flight. J. Exp. Biol. 142(1), 87–95 (1989)Google Scholar
  4. 4.
    O’Hara, R.P.: The Material Property and Structural Dynamic Characterization of the Manduca Sexta Forewing for Application to Flapping Micro Air Vehicle Design. Air Force Institute of Technology (2011)Google Scholar
  5. 5.
    Chirarattananon, P., Ma, K.Y., Wood, R.J.: Adaptive control of a millimeter-scale flapping-wing robot. Bioinspir. Biomim. 9(2), 025004 (2014)CrossRefGoogle Scholar
  6. 6.
    DeLeon, N.E.: Manufacturing and Evaluation of a Biologically Inspired Engineered MAV Wing Compared to the Manduca Sexta Wing Under Simulated Flapping Conditions. Air Force Institute of Technology (2011)Google Scholar
  7. 7.
    O’Hara, R.P., Palazotto, A.N.: Species for the Application of Biomimetic Flapping Wing Micro Air Vehicles. Bioinspir. Biomim. 7(4), 046011 (2012)CrossRefGoogle Scholar
  8. 8.
    Pena Francesch, A., Florez, S., Jung, H., Sebastian, A., Albert, I., Curtis, W., Demirel, M.C.: Materials Fabrication from a Recombinant Thermoplastic Squid Protein. Advanced Functional Materials 24(47), 7401–7409 (2014)Google Scholar
  9. 9.
    Pena Francesch, A., Akgun, B., Miserez, A., Zhu, W., Gao, H., Demirel, M.C.: Pressure Sensitive Adhesion of an Elastomeric Protein Complex Extracted from Squid Ring Teeth. Advanced Functional Materials 24(39), 6227–6233 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Simone C. Michaels
    • 1
    Email author
  • Kenneth C. Moses
    • 1
  • Richard J. Bachmann
    • 1
  • Reginald Hamilton
    • 2
  • Abdon Pena-Francesch
    • 2
  • Asheesh Lanba
    • 2
  • Melik C. Demirel
    • 2
  • Roger D. Quinn
    • 1
  1. 1.Biologically-Inspired Robotics LabCase Western Reserve UniversityClevelandUSA
  2. 2.Pennsylvania State UniversityState CollegeUSA

Personalised recommendations