Advertisement

Saying It with Light: A Pilot Study of Affective Communication Using the MIRO Robot

  • Emily C. Collins
  • Tony J. Prescott
  • Ben Mitchinson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9222)

Abstract

Recently, the concept of a ‘companion robot’ as a healthcare tool has been popularised, and even commercialised. We present MIRO, a robot that is biomimetic in aesthetics, morphology, behaviour, and control architecture. In this paper, we review how these design choices affect its suitability for a companionship role. In particular, we consider how emulation of the familiar body language and other emotional expressions of mammals may facilitate effective communication with naïve users through the reliable evocation of intended perceptions of emotional state and intent. We go on to present a brief pilot study addressing the question of whether shared cultural signals can be relied upon, similarly, as components of communication systems for companion robots. Such studies form part of our ongoing effort to understand and quantify human responses to robot expressive behaviour and, thereby, develop a methodology for optimising the design of social robots by accounting for individual and cultural differences.

Keywords

Humanoid Robot Body Language Social Robot Circumplex Model Body Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shibata, T., Yoshida, M., Yamato, J.: Artificial emotional creature for human-machine interaction. In: 1997 IEEE International Conference on Computational Cybernetics and Simulation Systems, Man, and Cybernetics, vol. 3, pp. 2269–2274. IEEE (1997)Google Scholar
  2. 2.
    Dautenhahn, K., Nehaniv, C.L., Walters, M.L., Robins, B., Kose-Bagci, H., Mirza, N.A., Blow, M.: Kaspar-a minimally expressive humanoid robot for human-robot interaction research. Applied Bionics and Biomechanics 6(3–4), 369–397 (2009)CrossRefGoogle Scholar
  3. 3.
    Tamura, T., Yonemitsu, S., Itoh, A., Oikawa, D., Kawakami, A., Higashi, Y., Fujimooto, T., Nakajima, K.: Is an entertainment robot useful in the care of elderly people with severe dementia? The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 59(1), M83–M85 (2004)CrossRefGoogle Scholar
  4. 4.
    Libin, A.V., Libin, E.V.: Person-robot interactions from the robopsychologists’ point of view: the robotic psychology and robotherapy approach. Proceedings of the IEEE 92(11), 1789–1803 (2004)CrossRefGoogle Scholar
  5. 5.
    Allen, K.M., Blascovich, J., Tomaka, J., Kelsey, R.M.: Presence of human friends and pet dogs as moderators of autonomic responses to stress in women. Journal of personality and social psychology 61(4), 582 (1991)CrossRefGoogle Scholar
  6. 6.
    Ballarini, G.: Pet therapy. animals in human therapy. Acta Bio Medica Atenei Parmensis 74(2), 97–100 (2003)Google Scholar
  7. 7.
    Collis, G., McNicholas, J.: A theoretical basis for health benefits of pet ownership. Companion Animals in Human Health, pp. 105–22 (1998)Google Scholar
  8. 8.
    Stiehl, W.D., Lieberman, J., Breazeal, C., Basel, L., Lalla, L., Wolf, M.: Design of a therapeutic robotic companion for relational, affective touch. In: IEEE International Workshop on Robot and Human Interactive Communication, ROMAN 2005, pp. 408–415. IEEE (2005)Google Scholar
  9. 9.
    Shibata, T.: Paro’s Goal (Purpose) and Effects (2015). http://paro.jp/?page_id=336 (Accessed July 9, 2015)
  10. 10.
    Kidd, C.D., Taggart, W., Turkle, S.: A sociable robot to encourage social interaction among the elderly. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 3972–3976. IEEE (2006)Google Scholar
  11. 11.
    Magai, C., Cohen, C., Gomberg, D., Malatesta, C., Culver, C.: Emotional expression during mid-to late-stage dementia. International Psychogeriatrics 8(03), 383–395 (1996)CrossRefGoogle Scholar
  12. 12.
    Breazeal, C., Scassellati, B.: How to build robots that make friends and influence people. In: Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 1999, vol. 2, pp. 858–863. IEEE (1999)Google Scholar
  13. 13.
    Bruce, A., Nourbakhsh, I., Simmons, R.: The role of expressiveness and attention in human-robot interaction. In: Proceedings IEEE International Conference on Robotics and Automation, ICRA 2002, vol. 4, pp. 4138–4142. IEEE (2002)Google Scholar
  14. 14.
    Mutlu, B., Shiwa, T., Kanda, T., Ishiguro, H., Hagita, N.: Footing in human-robot conversations: how robots might shape participant roles using gaze cues. In: Proceedings of the 4th ACM/IEEE international conference on Human robot interaction, pp. 61–68. ACM (2009)Google Scholar
  15. 15.
    Banks, M.R., Willoughby, L.M., Banks, W.A.: Animal-assisted therapy and loneliness in nursing homes: use of robotic versus living dogs. Journal of the American Medical Directors Association 9(3), 173–177 (2008)CrossRefGoogle Scholar
  16. 16.
    Pearson, M.J., Mitchinson, B., Sullivan, J.C., Pipe, A.G., Prescott, T.J.: Biomimetic vibrissal sensing for robots. Philosophical Transactions of the Royal Society of London B: Biological Sciences 366(1581), 3085–3096 (2011)CrossRefGoogle Scholar
  17. 17.
    Guizzo, E., Ackerman, E.: The rise of the robot worker. IEEE Spectrum 49(10), 34–41 (2012)CrossRefGoogle Scholar
  18. 18.
    Lepora, N.F., Verschure, P., Prescott, T.J.: The state of the art in biomimetics. Bioinspiration & biomimetics 8(1), 013001 (2013)CrossRefGoogle Scholar
  19. 19.
    Prescott, T.J., Redgrave, P., Gurney, K.: Layered control architectures in robots and vertebrates. Adaptive Behavior 7(1), 99–127 (1999)CrossRefGoogle Scholar
  20. 20.
    Dean, P., Redgrave, P., Westby, G.: Event or emergency? two response systems in the mammalian superior colliculus. Trends in Neurosciences 12(4), 137–147 (1989)CrossRefGoogle Scholar
  21. 21.
    Gurney, K., Prescott, T.J., Redgrave, P.: A computational model of action selection in the basal ganglia. i. a new functional anatomy. Biological Cybernetics 84(6), 401–410 (2001)CrossRefzbMATHGoogle Scholar
  22. 22.
    Pearson, M.J., Pipe, A.G., Melhuish, C., Mitchinson, B., Prescott, T.J.: Whiskerbot: a robotic active touch system modeled on the rat whisker sensory system. Adaptive Behavior 15(3), 223–240 (2007)CrossRefGoogle Scholar
  23. 23.
    Posner, J., Russell, J.A., Peterson, B.S.: The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Development and Psychopathology 17(03), 715–734 (2005)CrossRefGoogle Scholar
  24. 24.
    Mendl, M., Burman, O.H., Paul, E.S.: An integrative and functional framework for the study of animal emotion and mood. Proceedings of the Royal Society B: Biological Sciences 277(1696), 2895–2904 (2010)CrossRefGoogle Scholar
  25. 25.
    Beck, A., Hiolle, A., Mazel, A., Cañamero, L.: Interpretation of emotional body language displayed by robots. In: Proceedings of the 3rd International Workshop on Affective Interaction in Natural Environments, pp. 37–42. ACM (2010)Google Scholar
  26. 26.
    Yilmazyildiz, S., Henderickx, D., Vanderborght, B., Verhelst, W., Soetens, E., Lefeber, D.: Multi-modal emotion expression for affective human-robot interaction. In: Proceedings of the Workshop on Affective Social Speech Signals (WASSS 2013), Grenoble, France (2013)Google Scholar
  27. 27.
    Wallbott, H.G.: Bodily expression of emotion. European journal of social psychology 28(6), 879–896 (1998)CrossRefGoogle Scholar
  28. 28.
    Wemelsfelder, F., Hunter, A., Paul, E., Lawrence, A.: Assessing pig body language: Agreement and consistency between pig farmers, veterinarians, and animal activists. Journal of animal science 90(10), 3652–3665 (2012)CrossRefGoogle Scholar
  29. 29.
    Darwin, C.: The expression of the emotions in man and animals. Oxford University Press (2002)Google Scholar
  30. 30.
    Courtney, A.J.: Chinese population stereotypes: color associations. Human Factors: The Journal of the Human Factors and Ergonomics Society 28(1), 97–99 (1986)Google Scholar
  31. 31.
    Hurlbert, A.C., Ling, Y.: Biological components of sex differences in color preference. Current Biology 17(16), R623–R625 (2007)CrossRefGoogle Scholar
  32. 32.
    Maier, M.A., Barchfeld, P., Elliot, A.J., Pekrun, R.: Context specificity of implicit preferences: the case of human preference for red. Emotion 9(5), 734 (2009)CrossRefGoogle Scholar
  33. 33.
    Valdez, P., Mehrabian, A.: Effects of color on emotions. Journal of Experimental Psychology: General 123(4), 394 (1994)CrossRefGoogle Scholar
  34. 34.
    Manav, B.: Color-emotion associations and color preferences: A case study for residences. Color Research & Application 32(2), 144–150 (2007)CrossRefGoogle Scholar
  35. 35.
    Haring, M., Bee, N., André, E.: Creation and evaluation of emotion expression with body movement, sound and eye color for humanoid robots. In: 2011 IEEE RO-MAN, pp. 204–209. IEEE (2011)Google Scholar
  36. 36.
    Mäthger, L.M., Hanlon, R.T.: Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell and tissue research 329(1), 179–186 (2007)CrossRefGoogle Scholar
  37. 37.
    Collins, E.C., Prescott, T.J.: Individual differences and biohybrid societies. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS, vol. 8608, pp. 374–376. Springer, Heidelberg (2014) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Emily C. Collins
    • 1
  • Tony J. Prescott
    • 1
  • Ben Mitchinson
    • 1
  1. 1.The University Of SheffieldSheffieldUK

Personalised recommendations