Skip to main content

Using Animal Data and Neural Dynamics to Reverse Engineer a Neuromechanical Rat Model

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9222))

Abstract

A baseline model for testing how afferent muscle feedback affects both timing and activation levels of muscle contractions has been constructed. We present an improved version of the neuromechanical model from our previous work [6]. This updated model has carefully tuned muscles, feedback pathways, and central pattern generators (CPGs). Kinematics and force plate data from trotting rats were used to better design muscles for the legs. A recent pattern generator topology [15] is implemented to better mimic the rhythm generation and pattern formation networks in the animal. Phase-space and numerical phase response analyses reveal the dynamics underlying CPG behavior, resulting in an oscillator that produces both robust cycles and favorable perturbation responses. Training methods were used to tune synapse properties to shape desired motor neuron activation patterns. The result is a model which is capable of self-propelled hind leg stepping and will serve as a baseline as we investigate the effects changes in afferent feedback have on muscle activation patterns.

A.J. Hunt—This work was supported by a NASA Office of the Chief Technologists Space Technology Research Fellowship (Grant Number NNX12AN24H).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrada, E., Mämpel, J., Schmidt, A., Fischer, M.S., Karguth, A., Witte, H.: From biomechanics of rats’ inclined locomotion to a climbing robot. International Journal of Design and Nature and Ecodynamics 8(3), 191–212 (2013)

    Article  Google Scholar 

  2. Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D graphics environment for neuromechanical simulations. Journal of Neuroscience Methods 187(2), 280–288 (2010). http://www.ncbi.nlm.nih.gov/pubmed/20074588

    Article  Google Scholar 

  3. Daun-Gruhn, S., Rubin, J.E., Rybak, I.A.: Control of oscillation periods and phase durations in half-center central pattern generators: a comparative mechanistic analysis. Journal of Computational Neuroscience 27(1), 3–36 (2009). http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2844522&tool=pmcentrez&rendertype=abstract

  4. Ekeberg, O., Pearson, K.G.: Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition. Journal of Neurophysiology 94(6), 4256–4268 (2005). http://www.ncbi.nlm.nih.gov/pubmed/16049149

    Article  Google Scholar 

  5. Hooper, S.L., Guschlbauer, C., Blümel, M., Rosenbaum, P., Gruhn, M., Akay, T., Büschges, A.: Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 29(13), 4109–4119 (2009). http://www.ncbi.nlm.nih.gov/pubmed/19339606

    Article  Google Scholar 

  6. Hunt, A., Schmidt, M., Fischer, M., Quinn, R.D.: Neuromechanical simulation of an inter-leg controller for tetrapod coordination. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS (LNAI), vol. 8608, pp. 142–153. Springer, Heidelberg (2014). http://link.springer.com/chapter/10.1007/978-3-319-09435-9_13

    Google Scholar 

  7. Johnson, W.L., Jindrich, D.L., Roland, R.R., Edgerton, V.R.: A three-dimensional model of the rat hindlimb: musculoskeletal geometry and muscle moment arms. Journal of Biomechanics 41(3), 610–619 (2008). http://www.sciencedirect.com/science/article/pii/S0021929007004344

    Article  Google Scholar 

  8. McVea, D.A., Donelan, J.M., Tachibana, A., Pearson, K.G.: A role for hip position in initiating the swing-to-stance transition in walking cats. Journal of Neurophysiology 94(5), 3497–3508 (2005). http://www.ncbi.nlm.nih.gov/pubmed/16093331

    Article  Google Scholar 

  9. Meijer, K., Grootenboer, H., Koopman, H., van der Linden, B., Huijing, P.: A Hill type model of rat medial gastrocnemius muscle that accounts for shortening history effects. Journal of Biomechanics 31(6), 555–563 (1998). http://linkinghub.elsevier.com/retrieve/pii/S0021929098000487

    Article  Google Scholar 

  10. Pearson, K.G.: Role of sensory feedback in the control of stance duration in walking cats. Brain Research Reviews 57(1), 222–227 (2008). http://www.ncbi.nlm.nih.gov/pubmed/17761295

    Article  Google Scholar 

  11. Pearson, K.G., Ekeberg, O., Büschges, A.: Assessing sensory function in locomotor systems using neuro-mechanical simulations. Trends in Neurosciences 29(11), 625–631 (2006). http://www.ncbi.nlm.nih.gov/pubmed/16956675

    Article  Google Scholar 

  12. Szczecinski, N.S., Brown, A.E., Bender, J.A., Quinn, R.D., Ritzmann, R.E.: A Neuromechanical Simulation of Insect Walking and Transition to Turning of the Cockroach Blaberus discoidalis. Biological Cybernetics (2013)

    Google Scholar 

  13. Witte, H., Hackert, R., Lilje, K., Schilling, N., Voges, D., Klauer, G., Ilg, W., Albiez, J., Seyfarth, A., Germann, D., Hiller, M., Dillmann, R., Fischer, M.: Transfer of biological principles into the construction of quadruped walking machines. In: Proceedings of the Second International Workshop on Robot Motion and Control, RoMoCo 2001 (IEEE Cat. No.01EX535), pp. 245–249 (2001)

    Google Scholar 

  14. Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering (1989). http://ukpmc.ac.uk/abstract/MED/2676342

  15. Zhong, G., Shevtsova, N.A., Rybak, I.A., Harris-Warrick, R.M.: Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization. The Journal of Physiology 590(Pt. 19), 4735–4759 (2012). http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3487034&tool=pmcentrez&rendertype=abstract

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Hunt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hunt, A.J., Szczecinski, N.S., Andrada, E., Fischer, M., Quinn, R.D. (2015). Using Animal Data and Neural Dynamics to Reverse Engineer a Neuromechanical Rat Model. In: Wilson, S., Verschure, P., Mura, A., Prescott, T. (eds) Biomimetic and Biohybrid Systems. Living Machines 2015. Lecture Notes in Computer Science(), vol 9222. Springer, Cham. https://doi.org/10.1007/978-3-319-22979-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22979-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22978-2

  • Online ISBN: 978-3-319-22979-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics