A Model of Larval Biomechanics Reveals Exploitable Passive Properties for Efficient Locomotion

  • Dylan Ross
  • Konstantinos Lagogiannis
  • Barbara Webb
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9222)

Abstract

To better understand the role of natural dynamics in motor control, we have constructed a mathematical model of crawling mechanics in larval Drosophila.

The model accounts for key anatomical features such as a segmentally patterned, viscoelastic outer body wall (cuticle); a non-segmented inner cavity (haemocoel) filled with incompressible fluid that enables visceral pistoning; and claw-like protrusions (denticle bands) giving rise to asymmetric friction.

Under conditions of light damping and low forward kinetic friction, and with a single cuticle segment initially compressed, the passive dynamics of this model produce wave-like motion resembling that of real larvae. The presence of a volume-conserving hydrostatic skeleton allows a wave reaching the anterior of the body to initiate a new wave at the posterior, thus recycling energy. Forcing our model with a sinusoidal input reveals conditions under which power transfer from control to body may be maximised. A minimal control scheme using segmentally localised positive feedback is able to exploit these conditions in order to maintain wave-like motion indefinitely. These principles could form the basis of a design for a novel, soft-bodied, crawling robot.

Keywords

Larval Drosophila Biomechanical model Positive feedback control Peristaltic motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McGeer, T.: Passive Dynamic Walking. The International Journal of Robotics Research 62(82), 62–82 (1990)CrossRefGoogle Scholar
  2. 2.
    Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: Towards a theoretical foundation for morphological computation with compliant bodies. Biological Cybernetics 105, 355–370 (2011)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Shepherd, R.: Multigait soft robot. Proceedings of the National Academy of Sciences of the United States of America 108(51), 20400–20403 (2011)CrossRefGoogle Scholar
  4. 4.
    Tytell, E.D., Holmes, P., Cohen, A.H.: Spikes alone do not behaviour make: Why neuroscience needs biomechanics. Current Opinion in Neurobiology 21(5), 816–822 (2011)CrossRefGoogle Scholar
  5. 5.
    Kier, W.M.: The diversity of hydrostatic skeletons. The Journal of Experimental Biology 215(8), 1247–1257 (2012)CrossRefGoogle Scholar
  6. 6.
    Simon, M.A., Woods, W.A., Serebrenik, Y.V., Simon, S.M., van Griethuijsen, L.I., Socha, J.J., Lee, W.K., Trimmer, B.A.: Visceral-locomotory pistoning in crawling caterpillars. Current Biology 20(16), 1458–1463 (2010)CrossRefGoogle Scholar
  7. 7.
    Heckscher, E.S., Lockery, S.R., Doe, C.Q.: Characterization of Drosophila larval crawling at the level of organism, segment, and somatic body wall musculature. The Journal of Neuroscience 32(36), 12460–12471 (2012)CrossRefGoogle Scholar
  8. 8.
    Berrigan, D., Pepin, D.J.: How Maggots Move: Allometry and Kinematics of Crawling in Larval Diptera. J. Insect Physiol. 41(4), 329–337 (1995)CrossRefGoogle Scholar
  9. 9.
    Landgraf, M., Bossing, T., Technau, G.M., Bate, M.: The origin, location, and projections of the embryonic abdominal motorneurons of Drosophila. The Journal of Neuroscience 17(24), 9642–9655 (1997)Google Scholar
  10. 10.
    Fox, L.E., Soll, D.R., Wu, C.: Coordination and modulation of locomotion pattern generators in Drosophila larvae: effects of altered biogenic amine levels by the tyramine \(\beta \) hydroxlyase mutation. The Journal of Neuroscience 26(5), 1486–1498 (2006)CrossRefGoogle Scholar
  11. 11.
    Boyle, J.H., Berri, S., Cohen, N.: Gait Modulation in C. elegans: An Integrated Neuromechanical Model. Frontiers in Computational Neuroscience 6, 1–10 (2012)CrossRefGoogle Scholar
  12. 12.
    Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, New York (1993)Google Scholar
  13. 13.
    Skierczynski, B.A., Wilson, R.J., Kristan, W.B., Skalak, R.: A model of the hydrostatic skeleton of the leech. Journal of Theoretical Biology 181(4), 329–342 (1996)CrossRefGoogle Scholar
  14. 14.
    Alscher, C.: Simulating the motion of the leech : A biomechanical application of DAEs. Numerical Algorithms 19, 1–12 (1998)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Alexandre, C.: Cuticle preparation of Drosophila embryos and larvae. In: Dahmann, C (ed) Methods in Molecular Biology : Drosophila: Methods and Protocols, Ch. 11, pp. 197–205. Humana Press Inc. (2008)Google Scholar
  16. 16.
    Apostolopoulou, A.A., Hersperger, F., Mazija, L., Widmann, A., Wüst, A., Thum, A.S.: Composition of agarose substrate affects behavioral output of Drosophila larvae. Frontiers in Behavioral Neuroscience 8, 1–11 (2014)Google Scholar
  17. 17.
    Inestrosa, N.C., Sunkel, C.E., Arriagada, J., Garrido, J., Herrera, R.G.: Abnormal development of the locomotor activity in yellow larvae of Drosophila: a cuticular defect? Genetica 97, 205–210 (1996)CrossRefGoogle Scholar
  18. 18.
    Hughes, C.L., Thomas, J.B.: A Sensory Feedback Circuit Coordinates Muscle Activity in Drosophila. Mol. Cell. Neurosci. 35(2), 383–396 (2007)CrossRefGoogle Scholar
  19. 19.
    Inada, K., Kohsaka, H., Takasu, E., Nose, A.: Optical dissection of neural circuits responsible for Drosophila larval locomotion with halorhodopsin. PLOS ONE 6(12), 1–10 (2011)Google Scholar
  20. 20.
    Lahiri, S., Shen, K., Klein, M., Tang, A., Kane, E., Gershow, M., Garrity, P., Samuel, A.: Two alternating motor programs drive navigation in Drosophila larva. PLOS ONE 6(8), 1–12 (2011)CrossRefGoogle Scholar
  21. 21.
    Ross, D., Lagogiannis, K., Webb, B.: Online supplementary material. http://maggot.eu/documents/2015/04/SuppMechBodymodel.pdf

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Dylan Ross
    • 1
  • Konstantinos Lagogiannis
    • 1
  • Barbara Webb
    • 1
  1. 1.School of InformaticsUniversity of EdinburghEdinburghUK

Personalised recommendations