Skip to main content

Hybrid Tools for Hybrid Systems – Proving Stability and Safety at Once

  • Conference paper
  • First Online:
Formal Modeling and Analysis of Timed Systems (FORMATS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9268))

Abstract

Industrial applications usually require safety and stability properties. The safety property guarantees that “something bad” never happens, and the stability property guarantees that “something good” eventually happens. The analyses of both properties are usually performed in isolation. In this work, we consider analyzing both properties by a single automatic approach for hybrid systems. We basically merge analyses of both properties to exploit the knowledge gained from the analysis of each of them in the analysis of the other. We show how both analyses can be divided into multiple steps and interlocked such that both benefit from each other. In fact, we compute single-mode Lyapunov functions, unroll the hybrid system’s automaton via repeated reachability queries, and, finally, compute a global Lyapunov function. Each reachability query is simplified by exploiting the knowledge gained from the single-mode Lyapunov functions. The final computation of the global Lyapunov function is simplified by a precise characterization of the reachable states and reuses the single-mode Lyapunov functions.

We provide automated tools necessary to link the analyses and report on promising experiments we performed using our new prototype tool.

This work has been partly supported by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems. Automatica 44(11), 2724–2734 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Althoff, M., Krogh, B.H.: Avoiding geometric intersection operations in reachability analysis of hybrid systems. In: HSCC, pp. 45–54. ACM (2012)

    Google Scholar 

  3. Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative approximation. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 20–35. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems. Acta Informatica 43(7), 451–476 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borchers, B.: CSDP, a c library for semidefinite programming. Optim. Met. Softw. 10, 613–623 (1999)

    Article  MathSciNet  Google Scholar 

  6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Uni. Press (2004)

    Google Scholar 

  7. Chutinan, A., Krogh, B.: Computational techniques for hybrid system verification. IEEE Transactions on Automatic Control 48(1), 64–75 (2003)

    Article  MathSciNet  Google Scholar 

  8. Damm, W., Dierks, H., Oehlerking, J., Pnueli, A.: Towards component based design of hybrid systems: safety and stability. In: Manna, Z., Peled, D.A. (eds.) Time for Verification. LNCS, vol. 6200, pp. 96–143. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Damm, W., Hagemann, W., Möhlmann, E., Rakow, A.: Component based design of hybrid systems: A case study on concurrency and coupling. Technical Report 95, SFB/TR 14 AVACS (2014)

    Google Scholar 

  10. Damm, W., Möhlmann, E., Rakow, A.: Component based design of hybrid systems: a case study on concurrency and coupling. In: HSCC, pp. 145–150. ACM (2014)

    Google Scholar 

  11. Dang, T., Maler, O., Testylier, R.: Accurate hybridization of nonlinear systems. In: HSCC, pp. 11–20. ACM (2010)

    Google Scholar 

  12. Duggirala, P.S., Mitra, S.: Lyapunov abstractions for inevitability of hybrid systems. In: HSCC, pp. 115–124. ACM (2012)

    Google Scholar 

  13. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Gallier, J.: Notes on convex sets, polytopes, polyhedra, combinatorial topology, Voronoi diagrams and Delaunay triangulations. Technical Report 650, University of Pennsylvania Department of Computer and Information Science (2009)

    Google Scholar 

  15. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Girard, A., Le Guernic, C.: Zonotope/hyperplane intersection for hybrid systems reachability analysis. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 215–228. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Hagemann, W.: Reachability analysis of hybrid systems using symbolic orthogonal projections. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 407–423. Springer, Heidelberg (2014)

    Google Scholar 

  18. Hagemann, W., Möhlmann, E.: Inscribing \(\cal H\)-polyhedra in quadrics using a projective generalization of closed sets. In: CCCG (2015, to appear)

    Google Scholar 

  19. Hagemann, W., Möhlmann, E., Rakow, A.: Verifying a PI controller using SoapBox and Stabhyli: experiences on establishing properties for a steering controller. In: ARCH (2014)

    Google Scholar 

  20. Hagemann, W., Möhlmann, E., Theel, O.E.: Hybrid tools for hybrid systems: Proving stability and safety at once. Technical Report 108, SFB/TR 14 AVACS (2015)

    Google Scholar 

  21. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 202–214. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  22. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 540–554. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Löfberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. In: CACSD, Taipei, Taiwan (2004)

    Google Scholar 

  24. Lyapunov, M.: Problème général de la stabilité du movement. In: Ann. Fac. Sci. Toulouse, 9, pp. 203–474. Université Paul Sabatier (1907)

    Google Scholar 

  25. Mitchell, I., Tomlin, C.J.: Level set methods for computation in hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 310–323. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  26. Möhlmann, E., Theel, O.E.: Stabhyli: a tool for automatic stability verification of non-linear hybrid systems. In: HSCC, pp. 107–112. ACM (2013)

    Google Scholar 

  27. Oehlerking, J.: Decomposition of Stability Proofs for Hybrid Systems. PhD thesis, University of Oldenburg, Dept. of Computer Science, Oldenburg, Germany (2011)

    Google Scholar 

  28. Oehlerking, J., Burchardt, H., Theel, O.: Fully automated stability verification for piecewise affine systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 741–745. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  29. Oehlerking, J., Theel, O.: Decompositional construction of lyapunov functions for hybrid systems. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 276–290. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  30. Papachristodoulou, A., Anderson, J., Valmorbida, G., Prajna, S., Seiler, P., Parrilo, P.A.: SOSTOOLS: Sum-of-Squares Optimization Toolbox for MATLAB. http://arxiv.org/abs/1310.4716 (2013)

  31. Podelski, A., Wagner, S.: Region stability proofs for hybrid systems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 320–335. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  32. Prabhakar, P., Dullerud, G.E., Viswanathan, M.: Pre-orders for reasoning about stability. In: HSCC, pp. 197–206 (2012)

    Google Scholar 

  33. Prabhakar, P., Liu, J., Murray, R.M.: Pre-orders for reasoning about stability properties with respect to input of hybrid systems. In: EMSOFT, pp. 1–10 (2013)

    Google Scholar 

  34. Prabhakar, P., Garcia Soto, M.: Abstraction based model-checking of stability of hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 280–295. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  35. Prajna, S., Papachristodoulou, A.: Analysis of switched and hybrid systems - beyond piecewise quadraticmethods.In: ACC, vol. 4, pp. 2779–2784 (2003)

    Google Scholar 

  36. Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions. SIAM J. Control and Optimization 48(7), 4377–4394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sankaranarayanan, S., Dang, T., Ivančić, F.: Symbolic model checking of hybrid systems using template polyhedra. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 188–202. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eike Möhlmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Möhlmann, E., Hagemann, W., Theel, O. (2015). Hybrid Tools for Hybrid Systems – Proving Stability and Safety at Once. In: Sankaranarayanan, S., Vicario, E. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2015. Lecture Notes in Computer Science(), vol 9268. Springer, Cham. https://doi.org/10.1007/978-3-319-22975-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22975-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22974-4

  • Online ISBN: 978-3-319-22975-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics