Skip to main content

Nested Timed Automata with Frozen Clocks

  • Conference paper
  • First Online:
Formal Modeling and Analysis of Timed Systems (FORMATS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9268))

Abstract

A nested timed automaton (NeTA) is a pushdown system whose control locations and stack alphabet are timed automata (TAs). A control location describes a working TA, and the stack presents a pile of interrupted TAs. In NeTAs, all local clocks of TAs proceed uniformly also in the stack. This paper extends NeTAs with frozen local clocks (NeTA-Fs). All clocks of a TA in the stack can be either frozen or proceeding when it is pushed. A NeTA-F also allows global clocks adding to local clocks in the working TA, which can be referred and/or updated from the working TA. We investigate the reachability of NeTA-Fs showing that (1) the reachability with a single global clock is decidable, and (2) the reachability with multiple global clocks is undecidable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science 126, 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Trivedi, A., Wojtczak, D.: Recursive timed automata. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 306–324. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Benerecetti, M., Minopoli, S., Peron, A.: Analysis of timed recursive state machines. In: TIME 2010, pp. 61–68. IEEE (2010)

    Google Scholar 

  4. Li, G., Cai, X., Ogawa, M., Yuen, S.: Nested timed automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 168–182. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Berard, B., Haddad, S., Sassolas, M.: Real time properties for interrupt timed automata. In: TIME 2010, pp. 69–76. IEEE (2010)

    Google Scholar 

  7. Krishna, S.N., Manasa L., Trivedi, A.: What’s decidable about recursive hybrid automata? In: HSCC 2015, pp. 31–40. ACM (2015)

    Google Scholar 

  8. Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In: LICS 2012, pp. 35–44. IEEE (2012)

    Google Scholar 

  9. Cai, X., Ogawa, M.: Well-structured pushdown system: case of dense timed pushdown automata. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 336–352. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  10. Cai, X., Ogawa, M.: Well-structured pushdown systems. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 121–136. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Leroux, J., Praveen, M., Sutre, G.: Hyper-ackermannian bounds for pushdown vector addition systems. In: CSL-LICS 2014, pp. 63:1–63:10. IEEE (2014)

    Google Scholar 

  12. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for Real-Time Systems. Information and Computation 111, 193–244 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata: closing a decidability gap. In: LICS 2004, pp. 54–63. IEEE (2004)

    Google Scholar 

  14. Abdulla, P.A., Jonsson, B.: Verifying networks of timed processes (extended abstract). In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 298–312. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Abdulla, P., Jonsson, B.: Model Checking of Systems with Many Identical Time Processes. Theoretical Computer Science 290, 241–264 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall (1967)

    Google Scholar 

  17. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s Decidable about Hybrid Automata? Journal of Computer and System Sciences 57, 94–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, G., Ogawa, M., Yuen, S. (2015). Nested Timed Automata with Frozen Clocks. In: Sankaranarayanan, S., Vicario, E. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2015. Lecture Notes in Computer Science(), vol 9268. Springer, Cham. https://doi.org/10.1007/978-3-319-22975-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22975-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22974-4

  • Online ISBN: 978-3-319-22975-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics