Skip to main content

Welcome to Riemannian Computing in Computer Vision

  • Chapter
Riemannian Computing in Computer Vision

Abstract

The computer vision community has registered a strong progress over the last few years due to: (1) improved sensor technology, (2) increased computation power, and (3) sophisticated statistical tools. Another important innovation, albeit relatively less visible, has been the involvement of differential geometry in developing vision frameworks. Its importance stems from the fact that despite large sizes of vision data (images and videos), the actual interpretable variability lies on much lower-dimensional manifolds of observation spaces. Additionally, natural constraints in mathematical representations of variables and desired invariances in vision-related problems also lead to inferences on relevant nonlinear manifolds. Riemannian computing in computer vision (RCCV) is the scientific area that integrates tools from Riemannian geometry and statistics to develop theoretical and computational solutions in computer vision. Tools from RCCV has led to important developments in low-level feature extraction, mid-level object characterization, and high-level semantic interpretation of data. In this chapter we provide background material from differential geometry, examples of manifolds commonly encountered in vision applications, and a short summary of past and recent developments in RCCV. We also summarize and categorize contributions of the remaining chapters in this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amari S (1985) Differential geometric methods in statistics. Lecture notes in statistics, vol 28. Springer, New York

    Google Scholar 

  2. Amit Y, Grenander U, Piccioni M (1991) Structural image restoration through deformable templates. J Am Stat Assoc 86(414):376–387

    Article  Google Scholar 

  3. Anirudh R, Turaga P, Su J, Srivastava A (2015) Elastic functional coding of human actions: from vector-fields to latent variables. In: IEEE conference on computer vision and pattern recognition, Boston

    Google Scholar 

  4. Ballihi L, Amor BB, Daoudi M, Srivastava A, Aboutajdine D (2012) Boosting 3-d-geometric features for efficient face recognition and gender classification. IEEE Trans Inf Forensic Secur 7(6):1766–1779

    Article  Google Scholar 

  5. Beg M, Miller M, Trouvé A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vision 61:139–157

    Article  Google Scholar 

  6. Bhattacharya A (1943) On a measure of divergence between two statistical populations defined by their probability distributions. Bull Calcutta Math Soc 35:99–109

    MathSciNet  Google Scholar 

  7. Boothby WM (2007) An introduction to differentiable manifolds and Riemannian geometry, Revised, 2nd edn. Academic Press, New York

    Google Scholar 

  8. Brockett RW (1972) System theory on group manifolds and coset spaces. SIAM J Control 10(2):265–84

    Article  MATH  MathSciNet  Google Scholar 

  9. Chatterjee A, Govindu VM (2013) Efficient and robust large-scale rotation averaging. In: IEEE international conference on computer vision, ICCV, Sydney, pp 521–528

    Google Scholar 

  10. Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, Chichester

    MATH  Google Scholar 

  11. Duncan TE (1977) Some filtering results in Riemannian manifolds. Inf Control 35(3):182–195

    Article  MATH  Google Scholar 

  12. Duncan TE (1979) Stochastic systems in Riemannian manifolds. J Optim Theory Appl 27(3):399–426

    Article  MATH  MathSciNet  Google Scholar 

  13. Duncan TE (1990) An estimation problem in compact lie groups. Syst Control Lett 10(4):257–63

    Article  Google Scholar 

  14. Efron B (1975) Defining the curvature of a statistical problem (with applications to second order efficiency). Ann Stat 3:1189–1242

    Article  MATH  MathSciNet  Google Scholar 

  15. Fletcher P, Joshi S (2007) Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process 87(2):250–262

    Article  MATH  Google Scholar 

  16. Gallivan KA, Srivastava A, Liu X, Van Dooren P (2003) Efficient algorithms for inferences on grassmann manifolds. In: IEEE workshop on statistical signal processing, pp 315–318

    Google Scholar 

  17. Grenander U (1976/1978) Pattern synthesis: lectures in pattern theory, vol I, II. Springer, New York

    Google Scholar 

  18. Grenander U (1981) Regular structures: lectures in pattern theory, vol III. Springer, New York

    Book  MATH  Google Scholar 

  19. Grenander U (1993) General pattern theory. Oxford University Press, Oxford

    Google Scholar 

  20. Grenander U, Miller MI (1994) Representations of knowledge in complex systems. J R Stat Soc 56(3):549–603

    MATH  MathSciNet  Google Scholar 

  21. Grenander U, Miller MI (1998) Computational anatomy: an emerging discipline. Q Appl Math LVI(4):617–694

    Google Scholar 

  22. Grenander U, Chow Y, DKeenan (1990) HANDS: a pattern theoretic study of biological shapes. Springer, New York

    Google Scholar 

  23. Grenander U, Miller MI, Srivastava A (1998) Hilbert-Schmidt lower bounds for estimators on matrix Lie groups for ATR. IEEE Trans Pattern Anal Mach Intell 20(8):790–802

    Article  Google Scholar 

  24. Ham J, Lee DD (2008) Extended grassmann kernels for subspace-based learning. In: Advances in neural information processing systems, vol 21. Proceedings of the twenty-second annual conference on neural information processing systems, Vancouver, British Columbia, pp 601–608

    Google Scholar 

  25. Ham J, Lee DD (2008) Grassmann discriminant analysis: a unifying view on subspace-based learning. In: Proceedings of the twenty-fifth international conference on machine learning, (ICML 2008), Helsinki, pp 376–383

    Google Scholar 

  26. Hamm J, Lee DD (2008) Grassmann discriminant analysis: a unifying view on subspace-based learning. In: International conference on machine learning, Helsinki, pp 376–383

    Google Scholar 

  27. Hartley RI, Trumpf J, Dai Y, Li H (2013) Rotation averaging. Int J Comput Vis 103(3):267–305

    Article  MATH  MathSciNet  Google Scholar 

  28. Jayasumana S, Hartley RI, Salzmann M, Li H, Harandi MT (2013) Kernel methods on the riemannian manifold of symmetric positive definite matrices. In: IEEE conference on computer vision and pattern recognition, pp 73–80

    Google Scholar 

  29. Kanatani K (1990) Group-theoretical methods in image understanding. Springer, New York

    Book  MATH  Google Scholar 

  30. Kass RE, Vos PW (1997) Geometric foundations of asymptotic inference. Wiley, New York

    Book  Google Scholar 

  31. Kendall DG (1984) Shape manifolds, procrustean metrics and complex projective spaces. Bull Lond Math Soc 16:81–121

    Article  MATH  MathSciNet  Google Scholar 

  32. Kendall DG, Barden D, Carne TK, Le H (1999) Shape and shape theory. Wiley, Chichester

    Book  MATH  Google Scholar 

  33. Kent JT, Mardia KV (2001) Shape, Procrustes tangent projections and bilateral symmetry. Biometrika 88:469–485

    Article  MATH  MathSciNet  Google Scholar 

  34. Kneip A, Ramsay JO (2008) Combining registration and fitting for functional models. J Am Stat Assoc 103(483):1155–1165

    Article  MATH  MathSciNet  Google Scholar 

  35. Kume A, Dryden IL, Le H (2007) Shape-space smoothing splines for planar landmark data. Biometrika 94:513–528

    Article  MATH  MathSciNet  Google Scholar 

  36. Kurtek S, Klassen E, Ding Z, Srivastava A (2010) A novel Riemannian framework for shape analysis of 3d objects. In: IEEE computer society conference on computer vision and pattern recognition, pp 1625–1632

    Google Scholar 

  37. Kurtek S, Klassen E, Ding Z, Jacobson S, Jacobson JL, Avison MJ, Srivastava A (2011) Parameterization-invariant shape comparisons of anatomical surfaces. IEEE Trans Med Imaging 30(3):849–858

    Article  Google Scholar 

  38. Kurtek S, Klassen E, Gore JC, Ding Z, Srivastava A (2012) Elastic geodesic paths in shape space of parametrized surfaces. In: Transactions on pattern analysis and machine intelligence. Accepted for publication. doi:10.1109/TPAMI.2011.233

    MATH  Google Scholar 

  39. Lafferty J, Lebanon G (2005) Diffusion kernels on statistical manifolds. J Mach Learn Res 6:129–163

    MATH  MathSciNet  Google Scholar 

  40. Le H, Kendall DG (1993) The Riemannian structure of euclidean shape spaces: a novel environment for statistics. Ann Stat 21(3):1225–1271

    Article  MATH  MathSciNet  Google Scholar 

  41. Leonard NE, Krishnaprasad PS (1995) Motion control of drift-free left-invariant systems on lie groups. IEEE Trans Autom Control 40(9):1539–1554

    Article  MATH  MathSciNet  Google Scholar 

  42. Liu X, Srivastava A, Gallivan K (2004) Optimal linear representations of images for object recognition. IEEE Trans Pattern Anal Mach Intell 26(5):662–666

    Article  Google Scholar 

  43. Lui YM, Beveridge JR, Kirby M (2010) Action classification on product manifolds. In: IEEE international conference on computer vision and pattern recognition, pp 833–839

    Google Scholar 

  44. Mardia KV, Jupp P (2000) Directional statistics, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  45. Miller MI, Christensen GE, Amit Y, Grenander U (1993) Mathematical textbook of deformable neuroanatomies. Proc Nat Acad Sci 90(24):11944–11948

    Article  MATH  Google Scholar 

  46. Moakher M (2002) Means and averaging in the group of rotations. SIAM J Matrix Anal Appl 24:1–16

    Article  MATH  MathSciNet  Google Scholar 

  47. Moakher M (2005) A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J Matrix Anal Appl 26(3):735–747

    Article  MATH  MathSciNet  Google Scholar 

  48. Niebles JC, Wang H, Li F (2008) Unsupervised learning of human action categories using spatial-temporal words. Int J Comput Vis 79(3):299–318

    Article  Google Scholar 

  49. Pelletier B (2005) Kernel density estimation on riemannian manifolds. Stat Probab Lett 73(3):297–304

    Article  MATH  MathSciNet  Google Scholar 

  50. Pelletier B (2006) Nonparametric regression estimation on closed riemannian manifolds. J Nonparametr Stat 18(1):57–67

    Article  MATH  MathSciNet  Google Scholar 

  51. Pennec X, Fillard P, Ayache N (2006) A Riemannian framework for tensor computing. Int J Comput Vis 66(1):41–66

    Article  MATH  MathSciNet  Google Scholar 

  52. Porikli F, Tuzel O, Meer P (2006) Covariance tracking using model update based on lie algebra. In: IEEE international conference on computer vision and pattern recognition, New York, pp 728–735

    Google Scholar 

  53. Rao CR (1945) Information and accuracy attainable in the estimation of statistical parameters. Bull Calcutta Math Soc 37:81–91

    MATH  MathSciNet  Google Scholar 

  54. Schwartzman A (2006) Random ellipsoids and false discovery rates: statistics for diffusion tensor imaging data. Ph.D. thesis, Stanford

    Google Scholar 

  55. Spivak M (1979) A comprehensive introduction to differential geometry, vol I, II. Publish or Perish, Inc., Berkeley

    Google Scholar 

  56. Srivastava A (2000) A Bayesian approach to geometric subspace estimation. IEEE Trans Signal Process 48(5):1390–1400

    Article  MathSciNet  Google Scholar 

  57. Srivastava A, Klassen E (2004) Bayesian and geometric subspace tracking. Adv Appl Probab 136(1):43–56

    Article  MathSciNet  Google Scholar 

  58. Srivastava A, Liu X (2005) Tools for application-driven dimension reduction. J Neurocomput 67:136–160

    Article  Google Scholar 

  59. Srivastava A, Jermyn IH, Joshi SH (2007) Riemannian analysis of probability density functions with applications in vision. In: IEEE conference on computer vision and pattern recognition, CVPR’07, pp 1–8. doi:10.1109/CVPR.2007.383188

    Google Scholar 

  60. Srivastava A, Klassen E, Joshi SH, Jermyn IH (2011) Shape analysis of elastic curves in euclidean spaces. Pattern Anal Mach Intell 33(7):1415–1428

    Article  Google Scholar 

  61. Srivastava A, Wu W, Kurtek S, Klassen E, Marron JS (2011) Registration of functional data using Fisher-Rao metric. arXiv [arXiv:1103.3817]

    Google Scholar 

  62. Su J, Kurtek S, Klassen E, Srivastava A (2014) Statistical analysis of trajectories on riemannian manifolds: bird migration, hurricane tracking, and video surveillance. Ann Appl Stat 8(1):530–552

    Article  MATH  MathSciNet  Google Scholar 

  63. Subbarao R, Meer P (2009) Nonlinear mean shift over Riemannian manifolds. Int J Comput Vis 84(1):1–20

    Article  Google Scholar 

  64. Turaga PK, Veeraraghavan A, Chellappa R (2008) Statistical analysis on Stiefel and Grassmann manifolds with applications in computer vision. In: IEEE international conference on computer vision and pattern recognition

    Book  Google Scholar 

  65. Turaga P, Veeraraghavan A, Srivastava A, Chellappa R (2010) Statistical computations on grassmann and stiefel manifolds for image and video based recognition. In: IEEE transactions on pattern analysis and machine intelligence. Accepted for publication

    Google Scholar 

  66. Tuzel O, Porikli F, Meer P (2006) Region covariance: a fast descriptor for detection and classification. In: European conference on computer vision, Graz, pp 589–600

    Google Scholar 

  67. Tuzel O, Porikli F, Meer P (2008) Pedestrian detection via classification on riemannian manifolds. IEEE Trans Pattern Anal Mach Intell 30(10):1713–1727

    Article  Google Scholar 

  68. Vapnik V (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  69. Vaswani N, Roy-Chowdhury A, Chellappa R (2005) “shape activity”: a continuous-state hmm for moving/deforming shapes with application to abnormal activity detection. IEEE Trans Image Process 14(10):1603–1616

    Article  Google Scholar 

  70. Veeraraghavan A, Srivastava A, Roy Chowdhury AK, Chellappa R (2009) Rate-invariant recognition of humans and their activities. IEEE Trans Image Process 18(6):1326–1339

    Article  MathSciNet  Google Scholar 

  71. Vercautere T, Pennec X, Perchant A, Ayache N (2008) Symmetric log-domain diffeomorphic registration: a demons-based approach. In: MICCAI 2008. Lecture notes in computer science, vol 5241, pp 754–761

    Article  Google Scholar 

  72. Walsh G, Sarti A, Sastry S (1993) Algorithms for steering on the group of rotations. In: Proceedings of ACC

    Google Scholar 

  73. Younes L (1999) Optimal matching between shapes via elastic deformations. J Image Vis Comput 17(5/6):381–389

    Article  Google Scholar 

  74. Younes L, Michor PW, Shah J, Mumford D, Lincei R (2008) A metric on shape space with explicit geodesics. Mat E Appl 19(1):25–57

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support received from National Science Foundation grants #1320267 and #1319658 during the preparation of this edited volume.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Srivastava, A., Turaga, P.K. (2016). Welcome to Riemannian Computing in Computer Vision. In: Turaga, P., Srivastava, A. (eds) Riemannian Computing in Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-319-22957-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22957-7_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22956-0

  • Online ISBN: 978-3-319-22957-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics