Brokering of Cloud Infrastructures Driven by Simulation of Scientific Workloads

  • Alba Amato
  • Beniamino Di Martino
  • Fatos Xhafa
  • Salvatore Venticinque
Conference paper
Part of the Lecture Notes in Information Systems and Organisation book series (LNISO, volume 13)


Cloud Computing has demonstrated to be attractive for different application fields, including scientific ones, that have already benefited from distributed environments like Grid. Nevertheless the main Grid model is static, so users cannot add or modify computational resources in accordance to their needs. Besides it is not possible to dynamically modify the resources on the basis of the real system workload. Elastic computing and pay per use business model of Cloud paradigm have been investigated to build a Grid infrastructure over virtual resources. In this paper we propose the integrated utilization of simulation techniques and service brokering to provide a decision support to the user, when it needs to choose the best Cloud infrastructure and provider that satisfy the performance requirements of its scientific application, whose workload is known.


Multi-agent systems Broker Cloud computing Grid computing 


  1. 1.
    Amato, A., Di Martino, B., Venticinque, S.: Agents based multi-criteria decision aid. J. Ambient Intell. Humaniz. Comput. 5(5), 747–758 (2014)CrossRefGoogle Scholar
  2. 2.
    Amato, A., Liccardo, L., Rak, M., Venticinque, S.: Sla negotiation and brokering for sky computing. In: CLOSER, pp. 611–620 (2012)Google Scholar
  3. 3.
    Amato, A., Venticinque, S.: Multi-objective decision support for brokering of cloud Sla. In: The 27th IEEE International Conference on Advanced Information Networking and Applications (AINA-2013). IEEE Computer Society, Barcelona, Spain, 25–28 Mar 2013Google Scholar
  4. 4.
    Amato, A., Venticinque, S.: Modeling, design and evaluation of multi-objective cloud brokering. Int. J. Web Grid Serv. 11(1), 21–38 (2015).
  5. 5.
    Amato, A., Venticinque, S., Di Martino, B.: Evaluation and brokering of service level agreements for negotiation of cloud infrastructures. In: ICITST, pp. 144–149 (2012)Google Scholar
  6. 6.
    Carrera, D., Steinder, M., Whalley, I., Torres, J., Ayguadè, E.: Enabling resource sharing between transactional and batch workloads using dynamic application placement. In: Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware, pp. 203–222. Springer-Verlag New York, Inc., New York, NY, USA (2008)Google Scholar
  7. 7.
    Cherkasova, L., Gupta, D., Ryabinkin, E., Kurakin, R., Dobretsov, V., Vahdat, A.: Optimizing grid site manager performance with virtual machines. In: Proceedings of the 3rd Conference on USENIX Workshop on Real, Large Distributed Systems, vol. 3, pp. 5–5. WORLDS’06, USENIX Association, Berkeley, CA, USA (2006)Google Scholar
  8. 8.
    Foster, I.: A critique of using clouds to provide grids. (2008)
  9. 9.
    Foster, I.: What’s faster—a supercomputer or ec2? (2009)
  10. 10.
    Foster, I.T., Freeman, T., Keahey, K., Scheftner, D., Sotomayor, B., Zhang, X.: Virtual clusters for grid communities. In: CCGRID, pp. 513–520. IEEE Computer Society (2006)Google Scholar
  11. 11.
    Garg, S.K., Gopalaiyengar, S.K., Buyya, R.: SLA-based resource provisioning for heterogeneous workloads in a virtualized cloud datacenter. In: Proceedings of ICA3PP’11, Volume Part I, pp. 371–384. Springer-Verlag, Berlin, Heidelberg (2011)Google Scholar
  12. 12.
    Keahey, K., Foster, I.T., Freeman, T., Zhang, X.: Virtual workspaces: achieving quality of service and quality of life in the grid. Sci. Programm. 13(4), 265–275 (2005)Google Scholar
  13. 13.
    Myerson, J.: Cloud computing versus grid computing. (2009)
  14. 14.
    Pandey, A., Pooja: Cloud computing an on demand service platform. In: IJCA Proceedings on International Conference on Advances in Management and Technology 2013 iCAMT, 5–9 Feb 2013, foundation of Computer Science, New York, USAGoogle Scholar
  15. 15.
    Rings, T., Caryer, G., Gallop, J., Grabowski, J., Kovacikova, T., Schulz, S., Stokes-Rees, I.: Grid and cloud computing: opportunities for integration with the next generation network. J. Grid Comput. 7(3), 375–393 (2009)Google Scholar
  16. 16.
    Sehgal, S., Erdelyi, M., Merzky, A., Jha, S.: Understanding application-level inter-operability: scaling-out map reduce over high-performance grids and clouds. Future Gener. Comput. Syst. 27(5), 590–599 (2011)CrossRefGoogle Scholar
  17. 17.
    SLASOI: Slasoi,
  18. 18.
    Smith, M., Schmidt, M., Fallenbeck, N., Dornemann, T., Schridde, C., Freisleben, B.: Secure on-demand grid computing. Future Gener. Comput. Syst. 25(3), 315–325 (2009)CrossRefGoogle Scholar
  19. 19.
    Xhafa, F., Abraham, A.: Computational models and heuristic methods for grid scheduling problems. Future Gener. Comput. Syst. 26(4), 608–621 (2010)CrossRefGoogle Scholar
  20. 20.
    Xhafa, F., Alba, E., Dorronsoro, B., Duran, B.: Efficient batch job scheduling in grids using cellular memetic algorithms. J. Math. Model. Algorithms 7(2), 217–236 (2008)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Xhafa, F., Barolli, L., Durresi, A.: Batch mode scheduling in grid systems. IJWGS 3(1), 19–37 (2007)CrossRefGoogle Scholar
  22. 22.
    Xhafa, F., Carretero, J., Barolli, L., Durresi, A.: Requirements for an event-based simulation package for grid systems. J. Interconnect. Netw. 8(2), 163–178 (2007)CrossRefGoogle Scholar
  23. 23.
    Youseff, L., Wolski, R., Gorda, B., Krintz, C.: Paravirtualization for HPC systems. In: Proceedings of the 2006 International Conference on Frontiers of High Performance Computing and Networking, ISPA’06, pp. 474–486. Springer-Verlag, Berlin, Heidelberg (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alba Amato
    • 1
  • Beniamino Di Martino
    • 1
  • Fatos Xhafa
    • 2
  • Salvatore Venticinque
    • 1
  1. 1.Second University of NaplesCasertaItaly
  2. 2.Universitat Politcnica de Catalunya (UPC)BarcelonaSpain

Personalised recommendations