Skip to main content

Incorporating Biomarkers in Studies of Chemoprevention

  • Chapter
  • First Online:
Novel Biomarkers in the Continuum of Breast Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((BCRF,volume 882))

Abstract

Despite Food and Drug Administration approval of tamoxifen and raloxifene for breast cancer risk reduction and endorsement by multiple agencies, uptake of these drugs for primary prevention in the United States is only 4 % for risk eligible women likely to benefit from their use. Side effects coupled with incomplete efficacy and lack of a survival advantage are the likely reasons. This disappointing uptake, after the considerable effort and expense of large Phase III cancer incidence trials required for approval, suggests that a new paradigm is required. Current prevention research is focused on (1) refining risk prediction , (2) exploring behavioral and natural product interventions, and (3) utilizing novel translational trial designs for efficacy.

Risk biomarkers will play a central role in refining risk estimates from traditional models and selecting cohorts for prevention trials. Modifiable risk markers called surrogate endpoint or response biomarkers will continue to be used in Phase I and II prevention trials to determine optimal dose or exposure and likely effectiveness from an intervention. The majority of Phase II trials will continue to assess benign breast tissue for response and mechanism of action biomarkers. Co-trials are those in which human and animal cohorts receive the same effective dose and the same tissue biomarkers are assessed for modulation due to the intervention, but then additional animals are allowed to progress to cancer development. These collaborations linking biomarker modulation and cancer prevention may obviate the need for cancer incidence trials for non-prescription interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisher B, Costantino JP, Wickerham DL et al (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst 17:2659–2669

    Google Scholar 

  2. Fisher B, Costantino JP, Wickerham DL et al (2005) Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst 97:1652–1662

    Article  CAS  PubMed  Google Scholar 

  3. Powles TJ, Ashley S, Tidy A et al (2007) Twenty-year follow-up of the Royal Marsden randomized, double-blinded tamoxifen breast cancer prevention trial. J Natl Cancer Inst 99:283–290

    Article  CAS  PubMed  Google Scholar 

  4. Veronesi U, Maisonneuve P, Rotmensz N et al (2007) Tamoxifen for the prevention of breast cancer: late results of the Italian randomized tamoxifen prevention trial among women with hysterectomy. J Natl Cancer Inst 99:727–737

    Article  CAS  PubMed  Google Scholar 

  5. Cuzick J, Forbes J, Edwards R et al (2002) First results from the International Breast Cancer Intervention Study (IBIS-I): a randomised prevention trial. Lancet 360:817–824

    Article  CAS  PubMed  Google Scholar 

  6. Cuzick J, Forbes JF, Sestak I et al (2007) Long-term results of tamoxifen prophylaxis for breast cancer: 96-month follow-up of the randomized IBIS-I trial. J Natl Cancer Inst 99:272–282

    Article  CAS  PubMed  Google Scholar 

  7. Cuzick J, Sestak I, Bonanni B et al (2013) Selective oestrogen receptor modulators in prevention of breast cancer: an updated meta-analysis of individual participant data. Lancet 381:1827–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cuzick J, Sestak I, Forbes JF et al (2014) Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): an international, double-blind, randomised placebo-controlled trial. Lancet 383:1041–1048

    Article  CAS  PubMed  Google Scholar 

  9. Martino S, Cauley JA, Barrett-Connor E et al (2004) Continuing outcomes relevant to Evista: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. J Natl Cancer Inst 96:1751–1761

    Article  CAS  PubMed  Google Scholar 

  10. Vogel VG, Costantino JP, Wickerham DL et al (2010) Update of the national surgical adjuvant breast and bowel project study of tamoxifen and raloxifene (STAR) P-2 trial: preventing breast cancer. Cancer Prev Res 3:696–706

    Article  CAS  Google Scholar 

  11. Ropka ME, Keim J, Philbrick JT (2010) Patient decisions about breast cancer chemoprevention: a systematic review and meta-analysis. J Clin Oncol 28:3090–3095

    Article  PubMed  PubMed Central  Google Scholar 

  12. Waters EA, McNeel TS, Stevens WM et al (2012) Use of tamoxifen and raloxifene for breast cancer chemoprevention in 2010. Breast Cancer Res Treat 134:875–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Freedman AN, Graubard BI, Rao SR et al (2003) Estimates of the number of US women who could benefit from tamoxifen for breast cancer chemoprevention. J Natl Cancer Inst 95:526–532

    Article  CAS  PubMed  Google Scholar 

  14. Chlebowski RT, Col N, Winer EP et al (2002) American Society of Clinical Oncology technology assessment of pharmacologic interventions for breast cancer risk reduction including tamoxifen, raloxifene, and aromatase inhibition. J Clin Oncol 20:3328–3343

    Article  CAS  PubMed  Google Scholar 

  15. Visvanathan K, Chlebowski RT, Hurley P et al (2009) American Society of Clinical Oncology clinical practice guideline update on the use of pharmacologic interventions including tamoxifen, raloxifene, and aromatase inhibition for breast cancer risk reduction. J Clin Oncol 27:3235–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Visvanathan K, Hurley P, Bantug E et al (2013) Use of pharmacologic interventions for breast cancer risk reduction: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 31:2942–2962

    Article  PubMed  Google Scholar 

  17. Nelson HD, Smith ME, Griffin JC et al (2013) Use of medications to reduce risk for primary breast cancer: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med 158:604–614

    Article  PubMed  Google Scholar 

  18. NCCN National clinical practice guidelines in oncology: breast cancer: risk reduction Version 1.2014

    Google Scholar 

  19. Kaplan CP, Kim SE, Wong ST et al (2012) Willingness to use tamoxifen to prevent breast cancer among diverse women. Breast Cancer Res Treat 133:357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nichols HB, DeRoo LA, Scharf DR et al (2014) Risk-benefit profiles of women using tamoxifen for chemoprevention. J Natl Cancer Inst 107:354. doi:10.1093/jnci/dju354

    Article  PubMed  Google Scholar 

  21. Hartmann LC, Degnim AC, Santen RJ et al (2015) Atypical hyperplasia of the breast—risk assessment and management options. N Engl J Med 372:78–89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Allred DC, Mohsin SK, Fuqua SA (2001) Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer 8:47–61

    Article  CAS  PubMed  Google Scholar 

  23. Barr FE, Degnim AC, Hartmann LC et al (2011) Estrogen receptor expression in atypical hyperplasia: lack of association with breast cancer. Cancer Prev Res 4:435–444

    Article  Google Scholar 

  24. Middleton LP, Perkins GH, Tucker SL et al (2007) Expression of ER alpha and ER beta in lobular carcinoma in situ. Histopathology 50:875–880

    Article  CAS  PubMed  Google Scholar 

  25. Allred DC, Anderson SJ, Paik S et al (2012) Adjuvant tamoxifen reduces subsequent breast cancer in women with estrogen receptor-positive ductal carcinoma in situ: a study based on NSABP protocol B-24. J Clin Oncol 30:1268–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coopey SB, Mazzola E, Buckley JM et al (2012) The role of chemoprevention in modifying the risk of breast cancer in women with atypical breast lesions. Breast Cancer Res Treat 136:627–633

    Article  CAS  PubMed  Google Scholar 

  27. Fabian CJ, Kimler BF, Zalles CM et al (2000) Short-term breast cancer prediction by random periareolar fine-needle aspiration cytology and the Gail risk model. J Natl Cancer Inst 92:1217–1227

    Article  CAS  PubMed  Google Scholar 

  28. Goldenberg VK, Seewaldt VL, Scott V et al (2007) Atypia in random periareolar fine-needle aspiration affects the decision of women at high risk to take tamoxifen for breast cancer chemoprevention. Cancer Epidemiol Biomark Prev 16:1032–1034

    Article  CAS  Google Scholar 

  29. Powles TJ, Diem SJ, Fabian CJ et al (2012) Breast cancer incidence in postmenopausal women with osteoporosis or low bone mass using arzoxifene. Breast Cancer Res Treat 134:299–306

    Article  CAS  PubMed  Google Scholar 

  30. LaCroix AZ, Powles T, Osborne CK et al (2010) Breast cancer incidence in the randomized PEARL trial of lasofoxifene in postmenopausal osteoporotic women. J Natl Cancer Inst 102:1706–1715

    Article  CAS  PubMed  Google Scholar 

  31. Howell A, Cuzick J, Baum M et al (2005) Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 365:60–62

    Article  CAS  PubMed  Google Scholar 

  32. Cuzick J, Sestak I, Baum M et al (2010) Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year analysis of the ATAC trial. Lancet Oncol 11:1135–1141

    Article  CAS  PubMed  Google Scholar 

  33. Goss PE, Ingle JN, Alés-Martínez JE, NCIC CTG MAP.3 study investigators et al (2011) Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med 364:2381–2391

    Google Scholar 

  34. Sestak I, Singh S, Cuzick J et al (2014) Changes in bone mineral density at 3 years in postmenopausal women receiving anastrozole and risedronate in the IBIS-II bone substudy: an international, double-blind, randomised, placebo-controlled trial. Lancet Oncol 15:1460–1468

    Article  CAS  PubMed  Google Scholar 

  35. Hershman DL, Shao T, Kushi LH et al (2011) Early discontinuation and non-adherence to adjuvant hormonal therapy are associated with increased mortality in women with breast cancer. Breast Cancer Res Treat 126:529–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kelloff GJ, Boone CW, Crowell JA et al (1996) Risk biomarkers and current strategies for cancer chemoprevention. J Cell Biochem Suppl 25:1–14

    CAS  PubMed  Google Scholar 

  37. Garber JE, Offit K (2005) Hereditary cancer predisposition syndromes. J Clin Oncol 23:276–292

    Article  PubMed  Google Scholar 

  38. Antoniou AC, Casadei S, Heikkinen T et al (2014) Breast-cancer risk in families with mutations in PALB2. N Engl J Med 371:497–506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Finkelman BS, Rubinstein WS, Friedman S et al (2012) Breast and ovarian cancer risk and risk reduction in Jewish BRCA1/2 mutation carriers. J Clin Oncol 30:1321–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Phillips KA, Milne RL, Rookus MA et al (2013) Tamoxifen and risk of contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. J Clin Oncol 31:3091–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kurian AW, Sigal BM, Plevritis SK (2010) Survival analysis of cancer risk reduction strategies for BRCA1/2 mutation carriers. J Clin Oncol 28:222–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Campa D, Kaaks R, Le Marchand L et al (2011) Interactions between genetic variants and breast cancer risk factors in the breast and prostate cancer cohort consortium. J Natl Cancer Inst 103:1252–1263

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gail MH, Brinton LA, Byar DP et al (1989) Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81:1879–1886

    Article  CAS  PubMed  Google Scholar 

  44. Rockhill B, Spiegelman D, Byrne C et al (2001) Validation of the Gail et al. model of breast cancer risk prediction and implications for chemoprevention. J Natl Cancer Inst 93:358–366

    Article  CAS  PubMed  Google Scholar 

  45. Mealiffe ME, Stokowski RP, Rhees BK et al (2010) Assessment of clinical validity of a breast cancer risk model combining genetic and clinical information. J Natl Cancer Inst 102:1618–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Darabi H, Czene K, Zhao W et al (2012) Breast cancer risk prediction and individualised screening based on common genetic variation and breast density measurement. Breast Cancer Res 14:R25

    Article  PubMed  PubMed Central  Google Scholar 

  47. McCarthy A, Keller B, Kontos D et al (2015) The use of the Gail model, body mass index and SNPs to predict breast cancer among women with abnormal (BI-RADS 4) mammograms. Breast Cancer Res 17:1

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gail MH, Pee D (2012) Breast cancer risk assessment macro. http://dceg.cancer.gov/tools/risk-assessment/bcrasasmacro

  49. Tyrer J, Duffy SW, Cuzick J (2004) A breast cancer prediction model incorporating familial and personal risk factors. Stat Med 23:1111–1130

    Article  PubMed  Google Scholar 

  50. Ingle JN, Liu M, Wickerham DL et al (2013) Selective estrogen receptor modulators and pharmacogenomic variation in ZNF423 regulation of BRCA1 expression: individualized breast cancer prevention. Cancer Discov 3:812–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McCann SE, Moysich KB, Freudenheim JL et al (2002) The risk of breast cancer associated with dietary lignans differs by CYP17 genotype in women. J Nutr 132:3036–3041

    CAS  PubMed  Google Scholar 

  52. Piller R, Verla-Tebit E, Wang-Gohrke S et al (2006) CYP17 genotype modifies the association between lignan supply and premenopausal breast cancer risk in humans. J Nutr 136:1596–1603

    CAS  PubMed  Google Scholar 

  53. Stephensen CB, Armstrong P, Newman JW et al (2011) ALOX5 gene variants affect eicosanoid production and response to fish oil supplementation. J Lipid Res 52:991–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hartmann LC, Radisky DC, Frost MH et al (2014) Understanding the premalignant potential of atypical hyperplasia through its natural history: a longitudinal cohort study. Cancer Prev Res 7:211–217

    Article  CAS  Google Scholar 

  55. Dupont WD, Page DL (1985) Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med 312:146–151

    Article  CAS  PubMed  Google Scholar 

  56. Pankratz VS, Hartmann LC, Degnim AC et al (2008) Assessment of the accuracy of the Gail model in women with atypical hyperplasia. J Clin Oncol 26:5374–5379

    Article  PubMed  PubMed Central  Google Scholar 

  57. Boughey JC, Hartmann LC, Anderson SS et al (2010) Evaluation of the Tyrer–Cuzick (International Breast Cancer Intervention Study) model for breast cancer risk prediction in women. J Clin Oncol 28:3591–3596

    Article  PubMed  PubMed Central  Google Scholar 

  58. Milanese TR, Hartmann LC, Sellers TA et al (2006) Age-related lobular involution and risk of breast cancer. J Natl Cancer Inst 98:1600–1607

    Article  PubMed  Google Scholar 

  59. Pankratz VS, Degnim AC, Frank RD et al (2015) Model for individualized prediction of breast cancer risk after a benign breast biopsy. J Clin Oncol 33(8):923–929 (pii: JCO.2014.55.4865)

    Article  PubMed  PubMed Central  Google Scholar 

  60. Soderqvist G, Isaksson E, von Schoultz B et al (1997) Proliferation of breast epithelial cells in healthy women during the menstrual cycle. Am J Obstet Gynecol 176:123–128

    Article  CAS  PubMed  Google Scholar 

  61. Shoker BS, Jarvis C, Clarke RB et al (1999) Estrogen receptor-positive proliferating cells in the normal and precancerous breast. Am J Pathol 155:1811–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shaaban AM, Sloane JP, West CR et al (2002) Breast cancer risk in usual ductal hyperplasia is defined by estrogen receptor-alpha and Ki-67 expression. Am J Pathol 160:597–604

    Article  PubMed  PubMed Central  Google Scholar 

  63. Santisteban M, Reynolds C, Barr Fritcher EG et al (2010) Ki67: a time-varying biomarker of risk of breast cancer in atypical hyperplasia. Breast Cancer Res Treat 121:431–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Soderqvist G, von Schoultz B, Tani E et al (1993) Estrogen and progesterone receptor content in breast epithelial cells from healthy women during the menstrual cycle. Am J Obstet Gynecol 168:874–879

    Article  CAS  PubMed  Google Scholar 

  65. Khan SA, Sachdeva A, Naim S et al (1999) The normal breast epithelium of women with breast cancer displays an aberrant response to estradiol. Cancer Epidemiol Biomark Prev 78:867–872

    Google Scholar 

  66. Fabian CJ, Kimler BF, Mayo MS et al (2005) Breast-tissue sampling for risk assessment and prevention. Endocr Relat Cancer 12:185–213

    Article  CAS  PubMed  Google Scholar 

  67. Visscher DW, Pankratz VS, Santisteban M et al (2008) Association between cyclooxygenase-2 expression in atypical hyperplasia and risk of breast cancer. J Natl Cancer Inst 100:421–427

    Article  CAS  PubMed  Google Scholar 

  68. Khodr ZG, Sherman ME, Pfeiffer RM et al (2014) Circulating sex hormones and terminal duct lobular unit involution of the normal breast. Cancer Epidemiol Biomark Prev 23:2765–2773

    Article  CAS  Google Scholar 

  69. Khan QJ, Kimler BF, Clark J et al (2005) Ki-67 expression in benign breast ductal cells obtained by random periareolar fine needle aspiration. Cancer Epidemiol Biomark Prev 14:786–789

    Article  CAS  Google Scholar 

  70. Fabian CJ, Kimler BF, Zalles CM et al (2007) Reduction in proliferation with six months of letrozole in women on hormone replacement therapy. Breast Cancer Res Treat 106:75–84

    Article  CAS  PubMed  Google Scholar 

  71. Fabian CJ, Kimler BF, Zalles CM et al (2010) Reduction in Ki-67 in benign breast tissue of high-risk women with the lignan secoisolariciresinol diglycoside. Cancer Prev Res 3:1342–1350

    Article  CAS  Google Scholar 

  72. Petroff BK, Clark JL, Metheny T et al (2006) Optimization of estrogen receptor analysis by immunocytochemistry in random periareolar fine-needle aspiration samples of breast tissue processed as thin-layer preparations. Appl Immunohistochem Mol Morphol 14:360–364

    Article  CAS  PubMed  Google Scholar 

  73. Dumitrescu RG, Marian C, Krishnan SS et al (2010) Familial and racial determinants of tumour suppressor genes promoter hypermethylation in breast tissues from healthy women. J Cell Mol Med 14:1468–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fackler MJ, Rivers A, Teo WW et al (2009) Hypermethylated genes as biomarkers of cancer in women with pathologic nipple discharge. Clin Cancer Res 15:3802–3811

    Article  CAS  PubMed  Google Scholar 

  75. Antill YC, Mitchell G, Johnson SA et al (2010) Gene methylation in breast ductal fluid from BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol Biomark Prev 19:265–274

    Article  CAS  Google Scholar 

  76. Anjum S, Fourkala EO, Zikan M et al (2014) A BRCA1-mutation associated DNA methylation signature in blood cells predicts sporadic breast cancer incidence and survival. Genome Med 6:47. doi:10.1186/gm567. eCollection 2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Pu RT, Laitala LE, Alli PM et al (2003) Methylation profiling of benign and malignant breast lesions and its application to cytopathology. Mod Pathol 16:1095–1101

    Article  PubMed  Google Scholar 

  78. Petroff BK, Phillips TA, Kimler BF et al (2006) Detection of biomarker gene expression by real-time polymerase chain reaction using amplified ribonucleic acids from formalin-fixed random periareolar fine needle aspirates of human breast tissue. Anal Quant Cytol Histol 28:297–302

    PubMed  Google Scholar 

  79. Phillips TA, Fabian CJ, Kimler BF et al (2013) Assessment of RNA in human breast tissue sampled by random periareolar fine needle aspiration and ductal lavage and processed as fixed or frozen specimens. Reprod Biol 13:75–81

    Article  PubMed  Google Scholar 

  80. Meric-Bernstam F, Akcakanat A, Chen H et al (2014) Influence of biospecimen variables on proteomic biomarkers in breast cancer. Clin Cancer Res 20:3870–3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Warwick J, Birke H, Stone J et al (2014) Mammographic breast density refines Tyrer–Cuzick estimates of breast cancer risk in high-risk women: findings from the placebo arm of the International Breast Cancer Intervention Study I. Breast Cancer Res 16:451. doi:10.1186/s13058-014-0451-5

    Article  PubMed  PubMed Central  Google Scholar 

  82. Boyd NF, Byng JW, Jong RA et al (1995) Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst 87:670–675

    Article  CAS  PubMed  Google Scholar 

  83. Pettersson A, Graff RE, Ursin G et al (2014) Mammographic density phenotypes and risk of breast cancer: a meta-analysis. J Natl Cancer Inst 106. pii: dju078. doi:10.1093/jnci/dju078

    Google Scholar 

  84. Eng A, Gallant Z, Shepherd J et al (2014) Digital mammographic density and breast cancer risk: a case-control study of six alternative density assessment methods. Breast Cancer Res 16:439. doi:10.1186/s13058-014-0439-1

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang J, Azziz A, Fan B et al (2013) Agreement of mammographic measures of volumetric breast density to MRI. PLoS One 8:e81653. doi:10.1371/journal.pone.0081653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Pike MC, Pearce CL (2013) Mammographic density, MRI background parenchymal enhancement and breast cancer risk. Ann Oncol 24(Suppl 8):viii37–viii41

    PubMed  PubMed Central  Google Scholar 

  87. Boyd NF, Rommens JM, Vogt K et al (2005) Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol 6:798–808

    Article  PubMed  Google Scholar 

  88. Lindström S, Thompson DJ, Paterson AD et al (2014) Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk. Nat Commun 5:5303. doi:10.1038/ncomms6303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Missmer SA, Eliassen H, Barbier RL et al (2004) Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J Natl Cancer Inst 96:1856–1865

    Article  CAS  PubMed  Google Scholar 

  90. Farhat GN, Cummings SR, Chlebowski RT et al (2011) Sex hormone levels and risks of estrogen receptor-negative and estrogen receptor-positive breast cancers. J Natl Cancer Inst 103:562–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tworoger SS, Zhang X, Eliassen AH et al (2014) Inclusion of endogenous hormone levels in risk prediction models of postmenopausal breast cancer. J Clin Oncol 32:3111–3117

    Article  PubMed  PubMed Central  Google Scholar 

  92. Varghese JS, Smith PL, Folkerd E et al (2012) The heritability of mammographic breast density and circulating sex-hormone levels: two independent breast cancer risk factors. Cancer Epidemiol Biomark Prev 21:2167–2175

    Article  CAS  Google Scholar 

  93. Eliassen AH, Missmer SA, Tworoger SS et al (2006) Endogenous steroid hormone concentrations and risk of breast cancer among premenopausal women. J Natl Cancer Inst 98:1406–1415

    Article  CAS  PubMed  Google Scholar 

  94. Kaaks R, Berrino F, Key T et al (2005) Serum sex steroids in premenopausal women and breast cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC). J Natl Cancer Inst 97:755–765

    Article  CAS  PubMed  Google Scholar 

  95. Zeleniuch-Jacquotte A, Afanasyeva Y, Kaaks R et al (2012) Premenopausal serum androgens and breast cancer risk: a nested case-control study. Breast Cancer Res 14(1):R32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Baumgarten SC, Frasor J (2012) Inflammation: an instigator of more aggressive estrogen receptor (ER) positive breast cancers. Mol Endocrinol 26:360–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Becker S, Dossus L, Kaaks R (2009) Obesity related hyperinsulinaemia and hyperglycaemia and cancer development. Arch Physiol Biochem 115:86–96

    Article  CAS  PubMed  Google Scholar 

  98. Subbaramaiah K, Morris PG, Zhou ZK et al (2012) Increased levels of COX-2 and prostaglandin E2 contribute to elevated aromatase expression in inflamed breast tissue of obese women. Cancer Discov 2:356–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Howe LR, Subbaramaiah K, Hudis CA et al (2013) Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer Res 19:6074–6083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cecchini RS, Costantino JP, Cauley JA et al (2012) Body mass index and the risk for developing invasive breast cancer among high-risk women in NSABP P-1 and STAR breast cancer prevention trials. Cancer Prev Res 5:583–592

    Article  CAS  Google Scholar 

  101. Ballard-Barbash R, Swanson CA (1996) Body weight: estimation of risk for breast and endometrial cancers. Am J Clin Nutr 63(3 Suppl):437S–441S

    CAS  PubMed  Google Scholar 

  102. Gunter MJ, Xie X, Xue X et al (2015) Breast cancer risk in metabolically healthy but overweight postmenopausal women. Cancer Res 75:270–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tworoger SS, Eliassen AH, Kelesidis T et al (2007) Plasma adiponectin concentrations and risk of incident breast cancer. J Clin Endocrinol Metab 92:1510–1516

    Article  CAS  PubMed  Google Scholar 

  104. Vona-Davis L, Rose DP (2007) Adipokines as endocrine, paracrine, and autocrine factors in breastcancer risk and progression. Endocr Relat Cancer 14:189–206

    Article  CAS  PubMed  Google Scholar 

  105. Fabian CJ (2012) Adiponectin: a risk biomarker and attractive target for chemoprevention. J Clin Oncol 30:124–126

    Article  CAS  PubMed  Google Scholar 

  106. Catsburg C, Gunter MJ, Chen C et al (2014) Insulin, estrogen, inflammatory markers, and risk of benign proliferative breast disease. Cancer Res 74:3248–3258

    Article  CAS  PubMed  Google Scholar 

  107. Hernandez AV, Guarnizo M, Miranda Y et al (2014) Association between insulin resistance and breast carcinoma: a systematic review and meta-analysis. PLoS One 9:e99317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Hussein MR, Hassan HI (2006) Analysis of the mononuclear inflammatory cell infiltrate in the normal breast, benign proliferative breast disease, in situ and infiltrating ductal breast carcinomas: preliminary observations. J Clin Pathol 59:972–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pollard J (2008) Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 84:623–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wen ZH, Su YC, Lai PL et al (2013) Critical role of arachidonic acid-activated mTOR signaling in breast carcinogenesis and angiogenesis. Oncogene 32:160–170

    Article  CAS  PubMed  Google Scholar 

  111. Madeleine MM, Johnson LG, Malkki M et al (2011) Genetic variation in proinflammatory cytokines IL6, IL6R, TNF-region, and TNFRSF1A and risk of breast cancer. Breast Cancer Res Treat 129:887–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. DeCensi A, Puntoni M, Gandini S et al (2014) Differential effects of metformin on breast cancer proliferation according to markers of insulin resistance and tumor subtype in a randomized pre-surgical trial. Breast Cancer Res Treat 148:81–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tan-Chiu E, Wang J, Costantino JP et al (2003) Effects of tamoxifen on benign breast disease in women at high risk for breast cancer. J Natl Cancer Inst 95:302–307

    Article  CAS  PubMed  Google Scholar 

  114. Cuzick J, Warwick J, Pinney E et al (2011) Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: a nested case-control study. J Natl Cancer Inst 103:744–752

    Article  CAS  PubMed  Google Scholar 

  115. Dowsett M, Smith IE, Ebbs SR et al (2005) Short-term changes in Ki-67 during neoadjuvant treatment of primary breast cancer with anastrozole or tamoxifen alone or combined correlate with recurrence-free survival. Clin Cancer Res 11(Pt 2):951s–958s

    CAS  PubMed  Google Scholar 

  116. Hoffman A, Pellenberg R, Drendall CI et al (2012) Comparison of random periareolar fine needle aspirate versus ductal lavage for risk assessment and prevention of breast cancer. Curr Breast Cancer Rep 4:180–187

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ibarra-Drendall C, Wilke LG, Zalles C et al (2009) Reproducibility of random periareolar fine needle aspiration in a multi-institutional Cancer and Leukemia Group B (CALGB) cross-sectional study. Cancer Epidemiol Biomark Prev 18:1379–1385

    Article  Google Scholar 

  118. Ibarra-Drendall C, Troch MM, Barry WT et al (2012) Pilot and feasibility study: prospective proteomic profiling of mammary epithelial cells from high-risk women provides evidence of activation of pro-survival pathways. Breast Cancer Res Treat 132:487–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fabian CJ, Kimler BF, Donnelly JE et al (2013) Favorable modulation of benign breast tissue and serum risk biomarkers is associated with > 10 % weight loss in postmenopausal women. Breast Cancer Res Treat 142:119–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Akbani R, Becker KF, Carragher N et al (2014) Realizing the promise of reverse phase protein arrays for clinical, translational, and basic research: a workshop report: the RPPA (Reverse Phase Protein Array) society. Mol Cell Proteom 13:1625–1643

    Article  CAS  Google Scholar 

  121. Fabian CJ, Kimler BF (2006) Mammographic density: use in risk assessment and as a biomarker in prevention trials. J Nutr 136:2705S–2708S

    CAS  PubMed  Google Scholar 

  122. Cigler T, Richardson H, Yaffe MJ et al (2011) A randomized, placebo-controlled trial (NCIC CTG MAP.2) examining the effects of exemestane on mammographic breast density, bone density, markers of bone metabolism and serum lipid levels in postmenopausal women. Breast Cancer Res Treat 126:453–461

    Article  CAS  PubMed  Google Scholar 

  123. Boyd NF, Greenberg C, Lockwood G et al (1997) Effects at two years of a low-fat, high-carbohydrate diet on radiologic features of the breast: results from a randomized trial. Canadian Diet and Breast Cancer Prevention Study Group. J Natl Cancer Inst 89:488–496

    Article  CAS  PubMed  Google Scholar 

  124. Stone J, Gunasekara A, Martin LJ et al (2003) The detection of change in mammographic density. Cancer Epidemiol Biomark Prev 12:625–630

    CAS  Google Scholar 

  125. Fabian CJ, Kimler BF, Anderson J et al (2004) Breast cancer chemoprevention phase I evaluation of biomarker modulation by arzoxifene, a third generation selective estrogen receptor modulator. Clin Cancer Res 10:5403–5417

    Article  CAS  PubMed  Google Scholar 

  126. Decensi A, Robertson C, Viale G et al (2003) A randomized trial of low-dose tamoxifen on breast cancer proliferation and blood estrogenic biomarkers. J Natl Cancer Inst 95:779–790

    Article  CAS  PubMed  Google Scholar 

  127. Gandini S, Guerrieri-Gonzaga A, Pruneri G et al (2014) Association of molecular subtypes with Ki-67 changes in untreated breast cancer patients undergoing pre-surgical trials. Ann Oncol 25:618–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol J. Fabian M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Breast Cancer Research Foundation

About this chapter

Cite this chapter

Fabian, C., Kimler, B. (2016). Incorporating Biomarkers in Studies of Chemoprevention. In: Stearns, V. (eds) Novel Biomarkers in the Continuum of Breast Cancer. Advances in Experimental Medicine and Biology(), vol 882. Springer, Cham. https://doi.org/10.1007/978-3-319-22909-6_3

Download citation

Publish with us

Policies and ethics