Model-Based Metacontrol for Self-adaptation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9244)


There is an increasing demand for more autonomous systems. Enhancing systems with self-aware and self-adaptation capabilities can provide a solution to meet resilience needs. This article proposes a general design solution to build autonomous systems capable of run-time reconfiguration. The solution leverages Model-Driven Engineering with Model-Based Cognitive Control. The key idea is the integration of a metacontroller in the control architecture of the autonomous system, capable of perceiving the dysfunctional components of the control system and reconfiguring it, if necessary, at runtime. At the core of the metacontroller’s operation lies a model of the system’s functional architecture, which can be generated from the engineering modeling of the system.


Autonomy Model-based control Self-adaptation Self-awareness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albus, J.S.: RCS: a reference model architecture for intelligent control. Computer 25(5), 56–59 (1992)CrossRefGoogle Scholar
  2. 2.
    Aßmann, U., Zschaler, S., Wagner, G.: Ontologies, meta-models, and the model-driven paradigm. In: Calero, C., Ruiz, F., Piattini, M. (eds.) Ontologies for Software Engineering and Technology. Springer (2006)Google Scholar
  3. 3.
    Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control. Springer-Verlag, Berlin (2006)zbMATHGoogle Scholar
  4. 4.
    Chittaro, L., Kumar, A.N.: Reasoning about function and its applications to engineering. Artificial Intelligence in Engineering 12(4), 331–336 (1998)CrossRefGoogle Scholar
  5. 5.
    DeLoach, S.A., Oyenan, W.H., Matson, E.T.: A capabilities-based model for adaptive organizations. Autonomous Agents and Multi-Agent Systems 16, 13–56 (2008)CrossRefGoogle Scholar
  6. 6.
    Fernandez-Sánchez, J.L.: ISE & Process Pipelines in OO Architectures (ISE&PPOOA).
  7. 7.
    Garlan, D.: Software architecture: a travelogue. In: Proceedings of the on Future of Software Engineering, FOSE 2014, pp. 29–39. ACM, New York (2014)Google Scholar
  8. 8.
    Hernández, C.: Model-based Self-awareness Patterns for Autonomy. Ph.D. thesis, Universidad Politécnica de Madrid, ETSII, Dpto. Automática, Ing. Electrónica e Informática Industrial, José Gutierrez Abascal 2, 28006 Madrid (SPAIN), October 2013Google Scholar
  9. 9.
    Hernández, C., Bermejo-Alonso, J., López, I., Sanz, R.: Three patterns for autonomous robot control architecting. In: Zimmermann, A. (ed.) The Fifth International Conferences on Pervasive Patterns and Applications, PATTERNS 2013, pp. 44–51. IARIA, May 27, 2013Google Scholar
  10. 10.
    Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige, K.: The office marathon: robust navigation in an indoor office environment. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 300–307, May 2010Google Scholar
  12. 12.
    Sanz, R., Rodríguez, M.: The ASys vision. Tech. Rep. ASLAB-R-2007-001, Autonomous System Laboratory, February 2007Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Escuela Técnica Superior de Ingenieros IndustrialesUniversidad Politécnica de MadridMadridSpain

Personalised recommendations