Skip to main content

Frequency Analysis of the In-Plane Rotating Hub-Beam System Considering Effects of the Hub

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9244))

Included in the following conference series:

  • 5073 Accesses

Abstract

In this paper, the in-plane rotating hub-beam system is mainly investigated considering effects of the hub. By applying the extended Hamilton’s principle and the Galerkin method, the governing equation of motion of the hub-beam system is derived. The hub-beam rotary inertia ratio is investigated to reveal its effect on the frequency characteristics of the rotating hub-beam system. Through the frequency analysis, it is shown that the natural frequencies of different orders vary between those of the clamped and the pinned boundary conditions at the connecting point between the hub and the beam. Finally the figure of connecting rigidity is plotted to show the variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kane, T.R., Ryan, R.R., Banerjee, A.K.: Dynamics of a cantilever beam attached to a moving base. Journal of Guidance, Control, and Dynamics 10(2), 139–151 (1987)

    Article  Google Scholar 

  2. Seo, S., Yoo, H.H.: Dynamic analysis of flexible beams undergoing overall motion employing linear strain measures. Aiaa J. 40(2), 319–326 (2002)

    Article  Google Scholar 

  3. Yoo, H.H., Shin, S.H.: Vibration analysis of rotating cantilever beams. Journal of Sound and Vibration 212(5), 807–808 (1998)

    Article  Google Scholar 

  4. Yoo, H.H., Seo, S., Huh, K.: The effect of a concentrated mass on the modal characteristics of a rotating cantilever beam. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 216(2), 151–164 (2002). doi:10.1243/0954406021525098

    Google Scholar 

  5. Liu, J.Y., Hong, J.Z.: Dynamics of three-dimensional beams undergoing large overall motion. European Journal of Mechanics, A/Solids 23(6), 1051–1068 (2004). doi:10.1016/j.euromechsol.2004.08.003

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, J.Y., Hong, J.Z.: Geometric stiffening effect on rigid-flexible coupling dynamics of an elastic beam. Journal of Sound and Vibration 278(4–5), 1147–1162 (2004). doi:10.1016/j.jsv.2003.10.014

    Article  Google Scholar 

  7. Low, K.H., Lau, M.W.S.: Experimental investigation of the boundary condition of slewing beams using a high-speed camera system. Mechanism and Machine Theory 30(4), 629–643 (1995)

    Article  Google Scholar 

  8. Low, K.H.: A note on the effect of hub inertia and payload on the vibration of a flexible slewing link. Journal of Sound and Vibration 204(5), 823–828 (1997)

    Article  MathSciNet  Google Scholar 

  9. Bellezza, F., Lanari, L., Ulivi, G.: Exact modeling of the flexible slewing link. In: Proceedings of the 1990 IEEE International Conference on Robotics and Automation, pp. 734-739. Publ. by IEEE, Cincinnati

    Google Scholar 

  10. Morris, K.A., Taylor, K.J.: A Variational Calculus Approach to the Modelling of Flexible Manipulators. SIAM Review 38(2), 294–305 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhu, T.L.: The vibrations of pre-twisted rotating Timoshenko beams by the Rayleigh-Ritz method. Computational Mechanics 47(4), 395–408 (2011). doi:10.1007/s00466-010-0550-9

    Article  MathSciNet  MATH  Google Scholar 

  12. Blevins, R.D. (ed.): Formulas for natural frequency and mode shape. Krieger, Malabar, Fla (1979)

    Google Scholar 

  13. Yoo, H.H., Cho, J.E., Chung, J.: Modal analysis and shape optimization of rotating cantilever beams. Journal of Sound and Vibration 290(1–2), 223–241 (2006). doi:10.1016/j.jsv.2005.03.014

    Article  Google Scholar 

  14. Hamdan, M.N., Al-Bedoor, B.O.: Non-linear free vibrations of a rotating flexible arm. Journal of Sound and Vibration 242(5), 839–853 (2001). doi:10.1006/jsvi.2000.3387

    Article  Google Scholar 

  15. Lin, S.C., Hsiao, K.M.: Vibration analysis of a rotating Timoshenko beam. Journal of Sound and Vibration 240(2), 303–322 (2001). doi:10.1006/jsvi.2000.3234

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, Jw., Ma, Lt., Zhang, B., Ding, H. (2015). Frequency Analysis of the In-Plane Rotating Hub-Beam System Considering Effects of the Hub. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2015. Lecture Notes in Computer Science(), vol 9244. Springer, Cham. https://doi.org/10.1007/978-3-319-22879-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22879-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22878-5

  • Online ISBN: 978-3-319-22879-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics