Advertisement

Tuneable Stiffness Design of Soft Continuum Manipulator

  • Seri Mastura MustazaEmail author
  • Duale Mahdi
  • Chakravarthini Saaj
  • Wissam A. Albukhanajer
  • Constantina Lekakou
  • Yahya Elsayed
  • Jan Fras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9246)

Abstract

Soft continuum robots are highly deformable and manoeuvrable manipulators, capable of navigating through confined space and interacting safely with their surrounding environment, making them ideal for minimally invasive surgical applications. A crucial requirement of a soft robot is to control its overall stiffness efficiently, in order to execute the necessary surgical task in an unstructured environment. This paper presents a comparative study detailing the stiffness characterization of two soft manipulator designs and the formulation of a dynamic stiffness matrix for the purpose of disturbance rejection and stiffness control for precise tip positioning. An empirical approach is used to accurately describe the stiffness characteristics along the length of the manipulator and the derived stiffness matrix is applied in real-time control to reject disturbances. Further, the capability of the two types of soft robots to reject disturbances using the dynamic control technique is tested and compared. The results presented in this paper provide new insights into controlling the stiffness of soft continuum robots for minimally invasive surgical applications.

Keywords

Stiffness control Soft continuum robots Robustness Minimally invasive surgery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simaan, N., Taylor, R., Flint, P.: A dexterous system for laryngeal surgery. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 351–357, April 2004Google Scholar
  2. 2.
    Sears, P., Dupont, P.: A steerable needle technology using curved concentric tubes. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2850–2856, October 2006Google Scholar
  3. 3.
    Cianchetti, M., Ranzani, T., Gerboni, G., Nanayakkara, T., Althoefer, K., Dasgupta, P., Menciassi, A.: Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: the STIFF-FLOP approach. Soft Robotics 1(2), 122–131 (2014)CrossRefGoogle Scholar
  4. 4.
    Elsayed, Y., Lekakou, C., Ranazani, T., Cianchetti, M., Morino, M., Chirurgia, M., Arezzo, M., Gao, T., Saaj, C.: Crimped braided sleeves for soft, actuating arm in robotic abdominal surgery. Minimally Invasive Therapy & Allied Technologies (2015). doi: 10.3109/13645706.2015.1012083CrossRefGoogle Scholar
  5. 5.
    Stilli, A., Wurdemann, H.A., Althoefer, K.: Shrinkable, stiffness-controllable soft manipulator based on a bio-inspired antagonistic actuation principle. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2476-2481, September 14-18, 2014. doi: 10.1109/IROS.2014.6942899
  6. 6.
    Maghooa, F., Agostino, S., Althoefer, K., Wurdemann, H.A.: Tendon and pressure actuation for a bio-inspired manipulator based on an antagonistic principle. In: IEEE International Conference on Robotics and Automation (ICRA), Seattle, USA, May 26–30, 2015Google Scholar
  7. 7.
    Cheng, N.G., Lobovsky, M.B., Keating, S.J., Setapen, A.M., Gero, K.I., Hosoi, A.E., Iagnemma, K.D.: Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media. In IEEE International Conference on Robotics and Automation, pp. 4328–4333, May 2012Google Scholar
  8. 8.
    Loeve, A.J., van de Ven, O.S., Vogel, J.G., Breedveld, P., Dankelman, J.: Vacuum packed particles as flexible endoscope guides with controllable rigidity. IGranular Matter 12(6), 543–554 (2010)CrossRefGoogle Scholar
  9. 9.
    Jiang, A., Xynogalas, G., Dasgupta, P., Althoefer, K., Nanayakkara, T.: Design of a variable stiffness flexible manipulator with composite granular jamming and membrane coupling. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2922−2927, October 7-12, 2012Google Scholar
  10. 10.
    Lee, Y.-T., Choi, H.-R., Chung, W.-K., Youm, Y.: Stiffness control of a coupled tendon-driven robot hand. IEEE Control Systems 14(5), 10–19 (1994). doi: 10.1109/37.320882CrossRefGoogle Scholar
  11. 11.
    Mahvash, M., Dupont, P.: Stiffness control of surgical continuum manipulators. IEEE Transactions on Robotics 27(2), 334–345 (2011)CrossRefGoogle Scholar
  12. 12.
    Lekakou, C., Elsayed, Y., Geng, T., Saaj, C.M.: Skins and Sleeves for Soft Robotics: Inspiration from Nature and Architecture. Advanced Engineering Materials (2015). doi: 10.1002/adem.201400406CrossRefGoogle Scholar
  13. 13.
    Fraś, J., Czarnowski, J., Maciaś, M., Główka, J., Cianchetti, M., Menciassi, A.: New STIFF-FLOP module construction idea for improved actuation and sensing. In: IEEE International Conference on Robotics and Automation (ICRA), Seattle, USA, May 26-30, 2015Google Scholar
  14. 14.
    Cianchetti, M., Ranzani, T., Gerboni, G., De Falco, I., Laschi, C., Menciassi, A.: STIFF-FLOP surgical manipulator: mechanical design and experimental characterization of the single module. In: IEEE International Conference on Intelligent and Robotic Systems, pp. 3567-3581 (2014)Google Scholar
  15. 15.
    Carbone, G.: Stiffness analysis for grasping tasks: grasping in robotics. In: Carbone, G., (ed.) Mechanisms and Machine Science, vol. 10, pp. 17–55. Springer, London (2013)zbMATHGoogle Scholar
  16. 16.
    Noh, Y., Secco, E.L., Sareh, S., Wurdemann, H., Faragasso, A., Back, J., Liu, H., Sklar, E., Althoefer, K.: A continuum body force sensor designed for flexible surgical robotic devices. In: 36th Annual International Conference of IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3711−3714 (2014)Google Scholar
  17. 17.
    Noh, Y., Sareh, S., Back, J., Wurdemann, H.A., Ranzani, T., Secco, E.L., Faragasso, A., Liu, H., Althoefer, K.: A three-axial body force sensor for flexible manipulators. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 6388−6393 (2014)Google Scholar
  18. 18.
    Fraś, J., Czarnowski, J., Maciaś, M., Główka, J.: Static Modeling of Multisection Soft Continuum Manipulator for Stiff-Flop project. Springer (2014)Google Scholar
  19. 19.
    NDI 3D measurement technology systems. http://www.ndigital.com/medical/products/aurora/
  20. 20.
    Calinon, S., Bruno, D., Malekzadeh, M.S., Nanayakkara, T., Caldwell, D.G.: Human-robot skills transfer interfaces for a flexible surgical robot. Computer Methods and Programs in Biomedicine 116(2), 81–96 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Seri Mastura Mustaza
    • 1
    Email author
  • Duale Mahdi
    • 2
  • Chakravarthini Saaj
    • 1
  • Wissam A. Albukhanajer
    • 1
  • Constantina Lekakou
    • 2
  • Yahya Elsayed
    • 2
  • Jan Fras
    • 3
  1. 1.Department of Electronic Engineering, Faculty of Engineering and Physical SciencesUniversity of SurreyGuildford, SurreyUK
  2. 2.Division of Mechanical, Medical and Aerospace Engineering, Faculty of Engineering and Physical SciencesUniversity of SurreyGuildford, SurreyUK
  3. 3.Przemyslowy Instytut Automatyki i PomiarowWarsawPoland

Personalised recommendations