International Conference on Intelligent Robotics and Applications

ICIRA 2015: Intelligent Robotics and Applications pp 141-151 | Cite as

Stiffness Control of Soft Robotic Manipulator for Minimally Invasive Surgery (MIS) Using Scale Jamming

  • S. M. Hadi Sadati
  • Yohan Noh
  • S. Elnaz Naghibi
  • Althoefer Kaspar
  • Thrishantha Nanayakkara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9246)

Abstract

Continuum and soft robotics showed many applications in medicine from surgery to health care where their compliant nature is advantageous in minimal invasive interaction with organs. Stiffness control is necessary for challenges with soft robots such as minimalistic actuation, less invasive interaction, and precise control and sensing. This paper presents an idea of scale jamming inspired by fish and snake scales to control the stiffness of continuum manipulators by controlling the Coulomb friction force between rigid scales. A low stiffness spring is used as the backbone for a set of round curved scales to maintain an initial helix formation while two thin fishing steel wires are used to control the friction force by tensioning. The effectiveness of the design is showed for simple elongation and bending through mathematical modelling, experiments and in comparison to similar research. The model is tested to control the bending stiffness of a STIFF-FLOP continuum manipulator module designed for surgery.

Keywords

Stiffness control Soft robot Continuum manipulator Layer jamming Scale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuder, I.K., Arrieta, A.F., Raither, W.E., Ermanni, P.: Variable stiffness material and structural concepts for morphing applications. Prog. Aerosp. Sci. 63, 33–55 (2013)CrossRefGoogle Scholar
  2. 2.
    Laschi, C., Cianchetti, M., Mazzolai, B., Margheri, L., Follador, M., Dario, P.: Soft Robot Arm Inspired by the Octopus. Adv. Robot. 26(7), 709–727 (2012)CrossRefGoogle Scholar
  3. 3.
    Sornkarn, N., Howard, M., Nanayakkara, T.: Internal Impedance Control helps Information Gain in Embodied Perception, pp. 6685–6690 (2014)Google Scholar
  4. 4.
    Cheng, N.G., Lobovsky, M.B., Keating, S.J., Setapen, A.M., Gero, K.I., Hosoi, A.E., Iagnemma, K.D.: Design and Analysis of a Robust, Low-cost, Higly Articulated Manipulator Enabled by Jamming of Granular Media, pp. 4328–4333 (2012)Google Scholar
  5. 5.
    Jiang, A., Xynogalas, G., Dasgupta, P., Althoefer, K., Nanayakkara, T.: Design of a variable stiffness flexible manipulator with composite granular jamming and membrane coupling. In: 2012 IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 2922–2927, October 2012Google Scholar
  6. 6.
    Jiang, A., Ataollahi, A., Althoefer, K., Dasgupta, P., Nanayakkara, T.: A Variable stiffness joint by granular jamming. In: 36th Mech. Robot. Conf. Parts A B, vol. 4, p. 267, August 2012Google Scholar
  7. 7.
    Santiago, J.L.C., Walker, I.D., Godage, I.S.: Continuum robots for space applications based on layer-jamming scales with stiffening capability. In: IEEE Aerospace Conference, pp. 1–13 (2015)Google Scholar
  8. 8.
    Ou, J., Yao, L., Tauber, D., Steimle, J., Niiyama, R., Ishii, H.: JamSheets : Thin Interfaces with Tunable Stiffness Enabled by Layer Jamming (2014)Google Scholar
  9. 9.
    Kim, Y.-J., Cheng, S., Kim, S., Iagnemma, K.: A Novel Layer Jamming Mechanism With Tunable Stiffness Capability for Minimally Invasive Surgery. IEEE Trans. Robot. 29(4), 1031–1042 (2013)CrossRefGoogle Scholar
  10. 10.
    Long, J.H., Hale, M.E., McHenry, M.J., Westneat, M.W.: Functions of fish skin: Flexural stiffness and steady swimming of longnose gar Lepisosteus osseus. J. Exp. Biol. 199, 2139–2151 (1996)Google Scholar
  11. 11.
    Chang, J.H., Greenlee, A.S., Cheung, K.C., Slocum, A.H., Gupta, R.: Multi-turn, tension-stiffening catheter navigation system. In: 2010 IEEE Int. Conf. Robot. Autom., pp. 5570–5575, May 2010Google Scholar
  12. 12.
    Leech, A.R.: A study of the deformation of helical springs under eccentric loading. Naval Posigraduat1e School Monterey, California (1994)Google Scholar
  13. 13.
    Michalczyk, K.: Analysis of helical compression spring support influence on its deformation. Arch. Mech. Eng., vol. LVI (2009)Google Scholar
  14. 14.
    Cianchetti, M., Ranzani, T., Gerboni, G., De Falco, I., Laschi, C., Menciassi, A.: STIFF-FLOP surgical manipulator: Mechanical design and experimental characterization of the single module. In: IEEE Int. Conf. Intell. Robot. Syst., pp. 3576–3581 (2013)Google Scholar
  15. 15.
    Cianchetti, M., Ranzani, T., Gerboni, G., Nanayakkara, T., Althoefer, K., Dasgupta, P., Menciassi, A.: Soft Robotics Technologies to Address Shortcomings in Today’s Minimally Invasive Surgery: The STIFF-FLOP Approach. Soft Robot. 1(2), 122–131 (2014)CrossRefGoogle Scholar
  16. 16.
    Stilli, A., Wurdemann, H., Althoefer, K.: Shrinkable, stiffness-controllable soft manipulator based on a bio-inspired antagonistic actuation principle. In: IEEE/RJS International Conference on Intelligent Robots and Systems (2014)Google Scholar
  17. 17.
    Maghooa, F., Stilli, A., Althoefer, K., Wurdemann, H.: Tendon and pressure actuation for a bio-inspired manipulator based on an antagonistic principle. In: IEEE International Conference on Robotics and Automation (2015)Google Scholar
  18. 18.
    Song, X., Member, H.L., Member, K.A.: Efficient Break-Away Friction Ratio and Slip Prediction Based on Haptic Surface Exploration (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • S. M. Hadi Sadati
    • 1
  • Yohan Noh
    • 1
  • S. Elnaz Naghibi
    • 2
  • Althoefer Kaspar
    • 1
  • Thrishantha Nanayakkara
    • 1
  1. 1.Center for Robotics Research, Department of InformaticsKing’s College LondonLondonUK
  2. 2.School of Engineering and Materials Science, Queen Mary, University of LondonLondonUK

Personalised recommendations