Skip to main content

Carbon Nanotubes with Special Architectures for Biomedical Applications

  • Chapter
  • First Online:
Carbon Nanomaterials for Biomedical Applications

Abstract

In this chapter, we focus on the special architectures of carbon nanotubes (CNTs) for biomedical applications including biosensors, gene delivery, cell/tissue culture, and neural stimulation/recording. Besides the unique long fiber-like structure with ultrasmall diameter and high-aspect ratio, the biomedical applications also rely on the physical properties of CNTs, including high electrical conductivity, chirality-dependent electronic structure, characteristic optical properties, and high mechanical strength. The optimum performance depends on both the intrinsic CNT microstructures and the architectures into which the CNTs are organized. We illustrate the potential of these applications with an emphasis on the utilization of various CNT architectures based on their electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. T.W. Ebbesen, Carbon nanotubes: preparation and properties. (CRC Press, Boca Raton, 1997)

    Google Scholar 

  3. R.L. McCreery, Carbon electrodes: structural effects on electron transfer kinetics, in Electroanalytical chemistry, ed. by A.J. Bard (Marcel Dekker, New York, 1991), pp. 221–374

    Google Scholar 

  4. R.L. McCreery, Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108, 2646–2687 (2008)

    Article  Google Scholar 

  5. M. Endo, Y.A. Kim, T. Hayashi, Y. Fukai, K. Oshida, M. Terrones et al., Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl. Phys. Lett. 80, 1267–1269 (2002)

    Article  Google Scholar 

  6. Z.F. Ren, Z.P. Huang, D.Z. Wang, J.G. Wen, J.W. Xu, J.H. Wang et al., Growth of freestanding multiwall carbon nanotube on each each nanonickel dot. Appl. Phys. Lett. 75, 1086–1088 (1999)

    Article  Google Scholar 

  7. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal et al., Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998)

    Article  Google Scholar 

  8. B. Cruden, M. Meyyappan, Characterization of a radio frequency carbon nanotube growth plasma by ultraviolet absorption and optical emission spectroscopy. J. Appl. Phys. 97, 084311 (2005)

    Article  Google Scholar 

  9. A.V. Melechko, V.I. Merkulov, T.E. McKnight, M.A. Guillorn, K.L. Klein, D.H. Lowndes et al., Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys. 97, 41301-1-39 (2005)

    Article  Google Scholar 

  10. L.U. Syed, J. Liu, A.M. Prior, D.H. Hua, J. Li, Enhanced electron transfer rates by AC voltammetry for ferrocenes attached to the end of embedded carbon nanofiber nanoelectrode arrays. Electroanalysis 23, 1709–1717 (2011)

    Article  Google Scholar 

  11. L.Z. Swisher, A.M. Prior, S. Shishido, T.A. Nguyen, D.H. Hua, J. Li, Quantitative electrochemical detection of cathepsin B activity in complex tissue lysates using enhanced AC voltammetry at carbon nanofiber nanoelectrode arrays. Biosens. Bioelectron. 56, 129–136 (2014)

    Article  Google Scholar 

  12. L.Z. Swisher, L.U. Syed, A.M. Prior, F.R. Madiyar, K.R. Carlson, T.A. Nguyen et al., Electrochemical protease biosensor based on enhanced AC voltammetry using carbon nanofiber nanoelectrode arrays. J. Phys. Chem. C 117, 4268–4277 (2013)

    Article  Google Scholar 

  13. Q. Ngo, T. Yamada, M. Suzuki, Y. Ominami, A.M. Cassell, J. Li et al., Structural and electrical characterization of carbon nanofibers for interconnect via applications. IEEE Trans. Nanotechnol. 6, 688–695 (2007)

    Article  Google Scholar 

  14. E.C. Landis, R.J. Hamers, Covalent grafting of ferrocene to vertically aligned carbon nanofibers: electron-transfer processes at nanostructured electrodes. J. Phys. Chem. C 112, 16910–16918 (2008)

    Article  Google Scholar 

  15. S.A. Klankowski, R.A. Rojeski, B.A. Cruden, J. Liu, J. Wu, J. Li, A high-performance lithium-ion battery anode based on the core-shell heterostructure of silicon-coated vertically aligned carbon nanofibers. J. Mater. Chem. A 1, 1055–1064 (2013)

    Article  Google Scholar 

  16. M. Cinke, J. Li, B. Chen, A. Cassell, L. Delzeit, J. Han et al., Pore structure of raw and purified HiPco single-walled carbon nanotubes. Chem. Phys. Lett. 365, 69–74 (2002)

    Article  Google Scholar 

  17. J. Liu, J. Essner, J. Li, Hybrid supercapacitor based on coaxially coated manganese oxide on vertically aligned carbon nanofiber arrays. Chem. Mater. 22, 5022–5030 (2010)

    Article  Google Scholar 

  18. J. Liu, Y.-T. Kuo, K.J. Klabunde, C. Rochford, J. Wu, J. Li, Novel dye-sensitized solar cell architecture using TiO2-coated vertically aligned carbon nanofiber arrays. ACS Appl. Mater. Interfaces. 1, 1645–1649 (2009)

    Article  Google Scholar 

  19. J. Liu, J. Li, A. Sedhain, J. Lin, H. Jiang, Structure and photoluminescence study of TiO2 nanoneedle texture along vertically aligned carbon nanofiber arrays. J. Phys. Chem. C 112, 17127–17132 (2008)

    Article  Google Scholar 

  20. T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Structure and electronic properties of carbon nanotubes. J. Phys. Chem. B 104, 2794–2809 (2000)

    Article  Google Scholar 

  21. M. Anantram, F. Leonard, Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 69, 507–561 (2006)

    Article  Google Scholar 

  22. J. Han, Structures and properties of carbon nanotubes, in Carbon nanotubes science and applications, ed. by M. Meyyappan (CRC Press, Boca Raton, 2005), pp. 1–24

    Google Scholar 

  23. P.C. Collins, M.S. Arnold, P. Avouris, Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709 (2001)

    Article  Google Scholar 

  24. J.-P. Salvetat-Delmotte, A. Rubio, Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon 40, 1729–1734 (2002)

    Article  Google Scholar 

  25. R.S. Ruoff, D. Qian, W.K. Liu, Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C.R. Phys. 4, 993–1008 (2003)

    Article  Google Scholar 

  26. D. Srivastava, Computational nanotechnology of carbon nanotubes, in Carbon nanotubes: science and applications, ed. by M. Meyyappan (CRC Press, Boca Raton, 2005), pp. 25–63

    Google Scholar 

  27. D. Srivastava, M. Menon, K.J. Cho, Nanoplasticity of single-wall carbon nanotubes under uniaxial compression. Phys. Rev. Lett. 83, 2973–2976 (1999)

    Article  Google Scholar 

  28. B.A. Cruden, A.M. Cassell, Vertically oriented carbon nanofiber based nanoelectromechanical switch. IEEE Trans. Nanotechnol. 5, 350–355 (2006)

    Article  Google Scholar 

  29. H.J. Qi, K.B.K. Teo, K.K.S. Lau, M.C. Boyce, W.I. Milne, J. Robertson et al., Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. J. Mech. Phys. Solids 51, 2213–2237 (2003)

    Article  Google Scholar 

  30. P.U. Arumugam, H. Chen, S. Siddiqui, J.A.P. Weinrich, A. Jejelowo, J. Li et al., Wafer-scale fabrication of patterned carbon nanofiber nanoelectrode arrays: a route for development of multiplexed, ultrasensitive disposable biosensors. Biosens. Bioelectron. 24, 2818–2824 (2009)

    Article  Google Scholar 

  31. J. Li, H.T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye et al., Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett. 3, 597–602 (2003)

    Article  Google Scholar 

  32. J. Li, J.E. Koehne, A.M. Cassell, H. Chen, H.T. Ng, Q. Ye et al., Inlaid multi-walled carbon nanotube nanoelectrode arrays for electroanalysis. Electroanalysis 17, 15–27 (2005)

    Article  Google Scholar 

  33. T.B. Nguyen-Vu, H. Chen, A. Cassell, R. Andrews, M. Meyyappan, J. Li, Vertically aligned carbon nanofiber arrays: an advance toward electrical-neural interfaces. Small 2, 89–94 (2006)

    Article  Google Scholar 

  34. T.D.B. Nguyen-Vu, H. Chen, A.M. Cassell, R.J. Andrews, M. Meyyappan, J. Li, Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface. IEEE Trans. Biomed. Eng. 54, 1121–1128 (2007)

    Article  Google Scholar 

  35. M. Gao, L.M. Dai, G.G. Wallace, Biosensors based on aligned carbon nanotubes coated with inherently conducting polymers. Electroanalysis 15, 1089–1094 (2003)

    Article  Google Scholar 

  36. M. Gao, S.M. Huang, L.M. Dai, G. Wallace, R.P. Gao, Z.L. Wang, Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers. Angew. Chem.-Int. Ed. 39, 3664–3667 (2000)

    Article  Google Scholar 

  37. J.J. Gooding, R. Wibowo, J.Q. Liu, W.R. Yang, D. Losic, S. Orbons et al., Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc. 125, 9006–9007 (2003)

    Article  Google Scholar 

  38. J. Liu, A. Chou, W. Rahmat, M.N. Paddon-Row, J.J. Gooding, Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis 17, 38 (2005)

    Article  Google Scholar 

  39. F. Patolsky, Y. Weizmann, I. Willner, Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem.-Int. Ed. 43, 2113–2117 (2004)

    Article  Google Scholar 

  40. P.G. He, L.M. Dai. Aligned carbon nanotube-DNA electrochemical sensors. Chem. Commun. (Camb) 7(3), 348–9 (2004)

    Article  Google Scholar 

  41. J.J. Pancrazio, Neural interfaces at the nanoscale. Nanomedicine 3, 823–830 (2008)

    Article  Google Scholar 

  42. S.K. Seidlits, J.Y. Lee, C.E. Schmidt, Nanostructured scaffolds for neural applications. Nanomedicine 3, 183–199 (2008)

    Article  Google Scholar 

  43. E.D. de Asis Jr., T.D.B. Nguyen-Vu, P.U. Arumugam, H. Chen, A. Cassell, R. Andrews et al., High efficient electrical stimulation of hippocampal slices with vertically aligned carbon nanofiber microbrush array. Biomed. Microdevices 11, 801–808 (2009)

    Article  Google Scholar 

  44. W. Zhu, C. O’Brien, J.R. O’Brien, L.G. Zhang, 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration. Nanomedicine 9, 859–875 (2014)

    Article  Google Scholar 

  45. T.J. Webster, M.C. Waid, J.L. McKenzie, R.L. Price, J.U. Ejiofor, Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants. Nanotechnology 15, 48–54 (2004)

    Article  Google Scholar 

  46. Y. Tu, Y.H. Lin, Z.F. Ren, Nanoelectrode arrays based on low site density aligned carbon nanotubes. Nano. Lett. 3, 107–109 (2003)

    Article  Google Scholar 

  47. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamental and applications, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  48. J. Koehne, J. Li, A.M. Cassell, H. Chen, Q. Ye, H.T. Ng et al., The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays. J. Mater. Chem. 14, 676–684 (2004)

    Article  Google Scholar 

  49. J.E. Koehne, M. Marsh, A. Boakye, B. Douglas, I.Y. Kim, S.-Y. Chang et al., Carbon nanofiber electrode array for electrochemical detection of dopamine using fast scan cyclic voltammetry. Analyst 136, 1802–1805 (2010)

    Article  Google Scholar 

  50. Y.H. Lin, F. Lu, Y. Tu, Z.F. Ren, Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano. Lett. 4, 191–195 (2004)

    Article  Google Scholar 

  51. J. Koehne, H. Chen, J. Li, A.M. Cassell, Q. Ye, H.T. Ng et al., Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays. Nanotechnology 14, 1239–1245 (2003)

    Article  Google Scholar 

  52. J.E. Koehne, H. Chen, A.M. Cassell, Q. Yi, J. Han, M. Meyyappan et al., Miniaturized multiplex label-free electronic chip for rapid nucleic acid analysis based on carbon nanotube nanoelectrode arrays. Clinic. Chem. 50, 1886–1893 (2004)

    Article  Google Scholar 

  53. A. Periyakaruppan, P.U. Arumugam, M. Meyyappan, J.E. Koehne, Detection of ricin using a carbon nanofiber based biosensor. Biosens. Bioelectron. 28, 428–433 (2011)

    Article  Google Scholar 

  54. A. Periyakaruppan, R.P. Gandhiraman, M. Meyyappan, J.E. Koehne, Label-free detection of cardiac troponin-I using carbon nanofiber based nanoelectrode arrays. Anal. Chem. 85, 3858–3863 (2013)

    Article  Google Scholar 

  55. C.E. Banks, T.J. Davies, G.G. Wildgoose, R.G. Compton, Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem. Commun. (Camb) 2005, 829–841 (2005)

    Article  Google Scholar 

  56. S. Siddiqui, P.U. Arumugam, H. Chen, J. Li, M. Meyyappan, Characterization of carbon nanofiber electrode arrays using electrochemical impedance spectroscopy: effect of scaling down electrode size. ACS Nano. 4, 955–961 (2010)

    Article  Google Scholar 

  57. B.T. Houseman, J.H. Huh, S.J. Kron, M. Mrksich, Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol. 20, 270–274 (2002)

    Article  Google Scholar 

  58. Y. Li, L. Syed, J. Liu, D.H. Hua, J. Li, Lable-free electrochemical impedance detection of kinase and phosphatase activities using carbon nanofiber nanoelectrode arrays. Anal. Chim. Acta 744, 45–53 (2012)

    Article  Google Scholar 

  59. T.M. Johnson, J.W. Perich, J.D. Bjorge, D.J. Fujita, H.-C. Cheng, Common and differential recognition of structural features in synthetic peptides by the catalytic domain and the Src-Homology 2 (SH2) domain of pp60c-src. J.Peptide Res. 50, 365–371 (1997)

    Article  Google Scholar 

  60. O.A. Gutiérrez, M. Chavez, E. Lissi, A theoretical approach to some analytical properties of heterogeneous enzymatic assays. Anal. Chem. 76, 2664–2668 (2004)

    Article  Google Scholar 

  61. Y.-F. Li, L.U. Syed, J.-W. Liu, D.H. Hua, J. Li, Label-free electrochemical impedance detection of kinase and phosphatase activities using carbon nanofiber nanoelectrode arrays. Anal. Chim. Acta 744, 45–53 (2012)

    Article  Google Scholar 

  62. A. Salmeen, J.N. Andersen, M.P. Myers, N.K. Tonks, D. Barford, Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol. Cell. 6, 1401–1412 (2000)

    Article  Google Scholar 

  63. Z.Y. Zhang, D. Maclean, D.J. McNamara, T.K. Sawyer, J.E. Dixon, Protein tyrosine phosphatase substrate specificity: size and phosphotyrosine positioning requirements in peptide substrates. Biochemistry 33, 2285–2290 (1994)

    Article  Google Scholar 

  64. P.A. Cole, P. Burn, B. Takacs, C.T. Walsh, Evaluation of the catalytic mechanism of recombinant human CSK (C-terminal Src Kinase) using nucleotide analogs and viscosity effects. J. Biol. Chem. 269, 30880–30887 (1994)

    Google Scholar 

  65. Y. Liu, K. Shah, F. Yang, L. Witucki, K.M. Shokat, Engineering Src family protein kinases with unnatural nucleotide specificity. Chem. Biol. 5, 91–101 (1998)

    Article  Google Scholar 

  66. J. Shaffer, G.Q. Sun, J.A. Adams, Nucleotide release and associated conformational changes regulate function in the COOH-terminal Src kinase, Csk. Biochemistry 40, 11149–11155 (2001)

    Article  Google Scholar 

  67. S.L. Z., P.A. M., S. Shishido, T.A. Nguyen, D.H. Hua, J. Li, Quantitative electrochemical detection of cathepsin B activity in complex tissue lysates using enhanced AC voltammetry at carbon nanofiber nanoelectrode arrays. Biosens. Bioelectron. 56, 129–136 (2014)

    Article  Google Scholar 

  68. L.Z. Swisher, A.M. Prior, M.J. Gunaratna, S. Shishido, F. Madiyar, T.A. Nguyen et al., Quantitative electrochemical detection of Cathepsin B activity in breast cancer cell lysates using carbon nanofiber nanoelectrode arrays toward identification of cancer formation. In press

    Google Scholar 

  69. T.E. McKnight, A.V. Melechko, D.W. Austin, T. Sims, M.A. Guillorn, M.L. Simpson, Microarrays of vertically-aligned carbon nanofiber electrodes in an open fluidic channel. J. Phys. Chem. B 108, 7115–7125 (2004)

    Article  Google Scholar 

  70. R.C. Pearce, J.G. Railsback, B.D. Anderson, M.F. Sarac, T.E. McKnight, J.B. Tracy et al., Transfer of vertically aligned carbon nanofibers to polydimethylsiloxane (PDMS) while maintaining their alignment and impalefection functionality. ACS Appl. Mater. Interfaces 5, 878–882 (2013)

    Article  Google Scholar 

  71. J. Kim, J. Elsnab, C. Gehrke, J. Li, B.K. Gale, Microfluidic integrated multi-walled carbon nanotube (MWCNT) sensor for electrochemical nucleic acid concentration measurement. Sens. Actuators B 185, 370–376 (2013)

    Article  Google Scholar 

  72. L.U. Syed, J. Liu, A.K. Price, Yi-f. Li, C.T. Culbertson, J. Li, Dielectrophoretic capture of E. coli cells at micropatterned nanoelectrode arrays. Electrophoresis 32, 2358–2365 (2011)

    Google Scholar 

  73. P.U. Arumugam, H. Chen, A.M. Cassell, J. Li, Dielectrophoretic trapping of single bacteria at carbon nanofiber nanoelectrode arrays. J. Phys. Chem. A 111, 12772–12777 (2007)

    Article  Google Scholar 

  74. F.R. Madiyar, L.U. Syed, C.T. Culbertson, J. Li, Manipulation of bacteriophages with dielectrophoresis on carbon nanofiber nanoelectrode arrays. Electrophoresis 34, 1123–1130 (2013)

    Article  Google Scholar 

  75. J. Voldman, Electrical forces for microscale cell manipulation. Annu. Rev. Biomed. Eng. 8, 425–454 (2006)

    Article  Google Scholar 

  76. H.A. Pohl. Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields. (Cambridge University Press, Cambridge, 1978)

    Google Scholar 

  77. F.R. Madiyar, S. Bhana, L. Swisher, C. Culbertson, X. Huang, J. Li Integration of nanostructured dielectrophoretic device and surface-enhanced raman probe for highly sensitive rapid bacteria detection. Nanoscale. 7, 3726–3736 (2015)

    Google Scholar 

  78. H.A. Pohl, Nonuniform field effects in poorly conducting media. J. Electrochem. Soc. 107, 386–390 (1960)

    Article  Google Scholar 

  79. M.P. Hughes, H. Morgan, F.J. Rixon, J.P.H. Burt, R. Pethig Manipulation of herpes simplex virus type 1 by dielectrophoresis. Biochim. Biophys. Acta 1425, 119–26 (1998)

    Article  Google Scholar 

  80. M.P. Hughes, H. Morgan, F.J. Rixon, Dielectrophoretic manipulation and characterization of herpes simplex virus-1 capsids. Eur. Biophys. J. 30, 268–272 (2001)

    Article  Google Scholar 

  81. E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41, 2740–2779 (2012)

    Article  Google Scholar 

  82. J. Kneipp, H. Kneipp, A. Rajadurai, R.W. Redmond, K. Kneipp, Optical probing and imaging of live cells using SERS labels. J. Raman Spectrosc. 40, 1–5 (2009)

    Article  Google Scholar 

  83. M.D. Porter, R.J. Lipert, L.M. Siperko, G. Wang, R. Narayanan, SERS as a bioassay platform: fundamentals, design, and applications. Chem. Soc. Rev. 37, 1001–1011 (2008)

    Article  Google Scholar 

  84. F.R. Madiyar, S. Bhana, L.Z. Swisher, X. Huang, C.T. Culbertson, J. Li, Integration of nanostructured dielectrophoretic device and surface-enhanced Raman Probe for highly sensitive rapid bacteria detection, Chapter 5, Nanoelectrode based devices for rapid pathogen detection and identification, Foram Madilar Ph.D. Thesis, Kansas State University, page 175 (2015).

    Google Scholar 

  85. T.E. McKnight, A.V. Melechko, G.D. Griffin, M.A. Guillorn, V.I. Merkulov, F. Serna et al., Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 14, 551–556 (2003)

    Article  Google Scholar 

  86. T.E. McKnight, A.V. Melechko, D.K. Hensley, D.G.J. Mann, G.D. Griffin, M.L. Simpson, Tracking gene expression after DNA delivery using spatially indexed nanofiber arrays. Nano. Lett. 4, 1213–1219 (2004)

    Article  Google Scholar 

  87. Z. Yu, T.E. McKnight, M.N. Ericson, A.V. Melechko, M.L. Simpson,B. Morrison, Vertically aligned carbon nanofiber arrays record electrophysiological signals from hippocampal slices. Nano. Lett. 7, 2188–2195 (2007)

    Article  Google Scholar 

  88. Z. Yu, T.E. McKnight, M.N. Ericson, A.V. Melechko, M.L. Simpson, B. Morrison Iii, Vertically aligned carbon nanofiber as nano-neuron interface for monitoring neural function. Nanomed. Nanotechnol. Biol. Med. 8, 419–423 (2012)

    Article  Google Scholar 

  89. J. Li, N.Q. Wu, Biosensors based on nanomaterials and nanodevices, in Nanomaterials and their applications, ed. by M. Meyyppan (CRC Press, Boca Raton, 2014), p. 517

    Google Scholar 

  90. F.R. Madiyar, et.al. Adv. Appl. Nanotechnol. Agric., Am. Chem. Soc. 1143, 109–124 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, J., Madiyar, F., Swisher, L. (2016). Carbon Nanotubes with Special Architectures for Biomedical Applications. In: Zhang, M., Naik, R., Dai, L. (eds) Carbon Nanomaterials for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-22861-7_4

Download citation

Publish with us

Policies and ethics