Skip to main content

Biomimetic Surfaces for Cell Engineering

  • Chapter
  • First Online:
Book cover Carbon Nanomaterials for Biomedical Applications

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 5))

Abstract

Cell behavior, in particular, migration, proliferation, differentiation, apoptosis, and activation, is mediated by a multitude of environmental factors: (i) extracellular matrix (ECM) properties including molecular composition, ligand density, ligand gradients, stiffness, topography, and degradability; (ii) soluble factors including type, concentration, and gradients; (iii) cell–cell interactions; and (iv) external forces such as shear stress, material strain, osmotic pressure, and temperature changes. The coordinated influence of these environmental cues regulate embryonic development, tissue function, homeostasis, and wound healing as well as other crucial events in vivo. From a fundamental biology perspective, it is of great interest to understand how these environmental factors regulate cell fate and ultimately cell and tissue function. From an engineering perspective, it is of interest to determine how to present these factors in a well-controlled manner to elicit a desired cell output for cell and tissue engineering applications. Both biophysical and biochemical factors mediate intracellular signaling cascades that influence gene expression and ultimately cell behavior, making it difficult to unravel the hierarchy of cell fate stimuli. Accordingly, much effort has focused on the fabrication of biomimetic surfaces that recapitulate a single or many aspects of the in vivo microenvironment including topography, elasticity, and ligand presentation, and by structured materials that allow for control over cell shape, spreading, and cytoskeletal tension. Controlled presentation of these properties to develop a desired microenvironment can be harnessed to guide cell fate decisions toward chosen paths and has provided a wealth of knowledge concerning which cues regulate apoptosis, proliferation, migration, lineage-specific stem cell differentiation, and immune cell activation to name a few. This chapter focuses on the implementation of biomimetic surfaces that recapitulate and control one or more aspects of the cellular microenvironment to induce a desired cell response. More specifically, biomimetic surfaces that mimic in vivo ECM composition, density, gradients, stiffness, or topography; those that allow for control over cell shape, spreading, or cytoskeletal tension; and those that mimic cell surfaces are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Fujiwara, M. Ferreira, G. Donati, D.K. Marciano, J.M. Linton, Y. Sato, A. Hartner, K. Sekiguchi, L.F. Reichardt, F.M. Watt, The basement membrane of hair follicle stem cells is a muscle cell niche. Cell 144, 577–589 (2011)

    Article  Google Scholar 

  2. T. Sato, J.H. van Es, H.J. Snippert, D.E. Stange, R.G. Vries, M. van den Born, N. Barker, N.F. Shroyer, M. van de Wetering, H. Clevers, Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–8 (2011)

    Article  Google Scholar 

  3. A. Ashkenazi, V.M. Dixit, Death receptors: signaling and modulation. Science 281, 1305–1308 (1998)

    Article  Google Scholar 

  4. M.-H. Kim, M. Kino-oka, Switching between self-renewal and lineage commitment of human induced pluripotent stem cells via cell-substrate and cell-cell interactions on a dendrimer-immobilized surface. Biomaterials 35, 5670–5678 (2014)

    Article  Google Scholar 

  5. F. Chowdhury, Y. Li, Y.-C. Poh, T. Yokohama-Tamaki, N. Wang, T.S. Tanaka, Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PloS ONE 5, e15655 (2010)

    Article  Google Scholar 

  6. F. Guilak, D.M. Cohen, B.T. Estes, J.M. Gimble, W. Liedtke, C.S. Chen, Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17–26 (2009)

    Article  Google Scholar 

  7. J. Lee, A.A. Abdeen, K.A. Kilian, Rewiring mesenchymal stem cell lineage specification by switching the biophysical microenvironment. Sci. Rep. 4, 5188 (2014)

    Google Scholar 

  8. B. Trappmann, J.E. Gautrot, J.T. Connelly, D.G.T. Strange, Y. Li, M.L. Oyen, M.a. Cohen Stuart, H. Boehm, B. Li, V. Vogel, J.P. Spatz, F.M. Watt, W.T.S. Huck, Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 11, 642–649 (2012)

    Article  Google Scholar 

  9. I.D. de Souza, M.A.E. Cruz, A.N. de Faria, D.C. Zancanela, A.M.S. Simão, P. Ciancaglini, A.P. Ramos, Formation of carbonated hydroxyapatite films on metallic surfaces using dihexadecyl phosphate-lb film as template. Coll. Surf. B, Biointerfaces 118, 31–40 (2014)

    Article  Google Scholar 

  10. F. Benazzo, L. Botta, M.F. Scaffino, L. Caliogna, M. Marullo, S. Fusi, G. Gastaldi, Trabecular Titanium can induce in vitro osteogenic differentiation of human adipose derived stem cells without osteogenic factors. J. Biomed. Mater. Res. A. 102, 2061–2071 (2014)

    Article  Google Scholar 

  11. X. Deng, J. Lahann, Orthogonal surface functionalization through bioactive vapor-based polymer coatings. J. Appl. Polym. Sci. 131, 40315–40323(2014)

    Google Scholar 

  12. S.J. Liliensiek, S. Campbell, P.F. Nealey, C.J. Murphy, The scale of substratum topographic features modulates proliferation of corneal epithelial cells and corneal fibroblasts. J. Biomed. Mater. Res. 79, 185–192 (2006)

    Article  Google Scholar 

  13. W.P. Daley, S.B. Peters, M. Larsen, Extracellular matrix dynamics in development and regenerative medicine. J. Cell Sci. 121, 255–264 (2008)

    Article  Google Scholar 

  14. C.M. Metallo, J.C. Mohr, C.J. Detzel, J.J. de Pablo, B.J. Van Wie, S.P. Palecek, Engineering the stem cell microenvironment. Biotechnol. Prog. 23, 18–23 (2007)

    Article  Google Scholar 

  15. K.Y. Tan, H. Lin, M. Ramstedt, F.M. Watt, W.T.S. Huck, J.E. Gautrot, Decoupling geometrical and chemical cues directing epidermal stem cell fate on polymer brush-based cell micro-patterns. Integr. Biol. (Camb.). 5, 899–910 (2013)

    Article  Google Scholar 

  16. C. Mas-Moruno, R. Fraioli, F. Albericio, J.M. Manero, F.J. Gil, Novel peptide-based platform for the dual presentation of biologically active peptide motifs on biomaterials. Appl. Mater. Interfaces 6, 6525–6536 (2014)

    Article  Google Scholar 

  17. S.J. Ellis, G. Tanentzapf, Integrin-mediated adhesion and stem-cell-niche interactions. Cell Tissue Res. 339, 121–130 (2010)

    Article  Google Scholar 

  18. L. Gao, R. McBeath, C.S. Chen, Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-Cadherin. Stem Cells 28, 564–572 (2010)

    Google Scholar 

  19. S.R. Neves, P. Tsokas, A. Sarkar, E.A. Grace, P. Rangamani, S.M. Taubenfeld, C.M. Alberini, J.C. Schaff, R.D. Blitzer, I.I. Moraru, Iyengar, R. cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell 133, 666–680 (2008)

    Article  Google Scholar 

  20. J. Meyers, J. Craig, D.J. Odde, Potential for control of signaling pathways via cell size and shape. Curr. Biol. 16, 1685–1693 (2006)

    Article  Google Scholar 

  21. S.A. Ruiz, C.S. Chen, Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells 26, 2921–2927 (2008)

    Article  Google Scholar 

  22. J. Eyckmans, G.L. Lin, C.S. Chen, Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells. Biol. Open. 1, 1058–1068 (2012)

    Article  Google Scholar 

  23. K.A. Kilian, B. Bugarija, B.T. Lahn, M. Mrksich, Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. U S A. 107, 4872–4877 (2010)

    Article  Google Scholar 

  24. Z.A. Cheng, O.F. Zouani, K. Glinel, A.M. Jonas, M.-C. Durrieu, Bioactive chemical nanopatterns impact human mesenchymal stem cell fate. Nano Lett. 13, 3923–3929 (2013)

    Article  Google Scholar 

  25. D.M. Pirone, W.F. Liu, S.A. Ruiz, L. Gao, S. Raghavan, C.A. Lemmon, L.H. Romer, C.S. Chen, An inhibitory role for FAK in regulating proliferation: a link between limited adhesion and rhoA-ROCK signaling. J. Cell Biol. 174, 277–288 (2006)

    Article  Google Scholar 

  26. J.H.C. Wang, B.P. Thampatty, Mechanobiology of adult and stem cells. Int. Rev. Cell Mol. Biol. 271, 301–346 (2008)

    Article  Google Scholar 

  27. D.E. Discher, P. Janmey, Y.-L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005)

    Article  Google Scholar 

  28. S. Khetan, M. Guvendiren, W.R. Legant, D.M. Cohen, C.S. Chen, J.A. Burdick, Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12, 458–465 (2013)

    Article  Google Scholar 

  29. H.B. Wang, M. Dembo, Y.L. Wang, Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell Physiol. 279, C1345–1350 (2000)

    Google Scholar 

  30. K. Rana, J.L. Liesveld, M.R. King, Delivery of apoptotic signal to rolling cancer cells: a novel biomimetic technique using immobilized trail and e-selectin. Biotechnol. Bioeng. 102, 1692–1702 (2009)

    Article  Google Scholar 

  31. K. Rana, C.A. Reinhart-King, M.R. King, Inducing apoptosis in rolling cancer cells: a combined therapy with aspirin and immobilized trail and e-selectin. Mol. Pharm. 9, 2219–2227 (2012)

    Google Scholar 

  32. S.M. Frisch, H. Francis, Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124, 619–626 (1994)

    Article  Google Scholar 

  33. A.J. Hale, C.A. Smith, L.C. Sutherland, V.E. Stoneman, V. Longthorne, A.C. Culhane, G.T. Williams, Apoptosis: molecular regulation of cell death. Eur. J. Biochem. 237, 884 (1996)

    Google Scholar 

  34. J.L. Leight, M.A. Wozniak, S. Chen, M.L. Lynch, C.S. Chen, Y. Wang, Matrix rigidity regulates a switch between Tgf-B1—induced apoptosis and epithelial €″. Mesenchymal. Transit. 23, 781–791 (2012)

    Google Scholar 

  35. E. Hadjipanayi, V. Mudera, R.A. Brown, Close dependence of fibroblast proliferation on collagen scaffold matrix stiffness. J. Tissue Eng. Regen. Med. 3, 77–84 (2009)

    Article  Google Scholar 

  36. D.S. Gray, W.F. Liu, C.J. Shen, K. Bhadriraju, C.M. Nelson, C.S. Chen, Engineering amount of cell-cell contact demonstrates biphasic proliferative regulation through RhoA and the actin cytoskeleton. Exp. Cell Res. 314, 2846–2854 (2008)

    Article  Google Scholar 

  37. R. McBeath, D.M. Pirone, C.M. Nelson, K. Bhadriraju, C.S. Chen, Cell shape, cytoskeletal tension, and Rhoa regulate stem cell lineage commitment. Dev. Cell. 6, 483–495 (2004)

    Article  Google Scholar 

  38. C.M. Nelson, C.S. Chen, Cell-cell signaling by direct contact increases cell proliferation via a Pi3k-dependent signal. FEBS Lett. 514, 238–242 (2002)

    Article  Google Scholar 

  39. C.M. Nelson, C.S. Chen, VE-cadherin simultaneously stimulates and inhibits cell proliferation by altering cytoskeletal structure and tension. J. Cell Sci. 116, 3571–3581 (2003)

    Article  Google Scholar 

  40. Z.a. Cheng, O.F. Zouani, K. Glinel, A.M. Jonas, M.-C. Durrieu, Bioactive chemical nanopatterns impact human mesenchymal stem cell fate. Nano Lett. 13, 3923–3929 (2013)

    Article  Google Scholar 

  41. D.E. Discher, D.J. Mooney, P.W. Zandstra, Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009)

    Article  Google Scholar 

  42. A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)

    Article  Google Scholar 

  43. J. Lee, A.A. Abdeen, D. Zhang, K.A. Kilian, Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 34, 8140–8148 (2013)

    Article  Google Scholar 

  44. X. Wang, C. Yan, K. Ye, Y. He, Z. Li, J. Ding, Effect of RGD nanospacing on differentiation of stem cells. Biomaterials 34, 2865–2874 (2013)

    Article  Google Scholar 

  45. R.O. Hynes, Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992)

    Article  Google Scholar 

  46. A.S. Goldstein, In Tissue Engineering, ed. by J.P. Fisher, A.G. Mikos, J.D. Bronzino. Cell adhesion. (CRC Press, Boca Raton, 2007), pp. 5–1 to 5–17

    Google Scholar 

  47. R. Zaidel-Bar, C. Ballestrem, Z. Kam, B. Geiger, Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J. Cell Sci. 116, 4605–4613 (2003)

    Article  Google Scholar 

  48. R. Zaidel-Bar, M. Cohen, L. Addadi, B. Geiger, Hierarchical assembly of cell-matrix adhesion complexes. Biochem. Soc. Trans. 32, 416–420 (2004)

    Article  Google Scholar 

  49. B. Geiger, A. Bershadsky, R. Pankov, K.M. Yamada, Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat. Rev. Mol. Cell. Biol. 2, 793–805 (2001)

    Article  Google Scholar 

  50. B. Geiger, K.M. Yamada, Molecular architecture and function of matrix adhesions. Cold Spring Harb. Perspect. Biol. (2011). doi:10.1101/cshperspect.a005033

    Google Scholar 

  51. R. Zaidel-Bar, R. Milo, Z. Kam, B. Geiger, A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. J. Cell Sci. 120, 137–148 (2007)

    Article  Google Scholar 

  52. C. Ballestrem, N. Erez, J. Kirchner, Z. Kam, A. Bershadsky, B. Geiger, Molecular mapping of tyrosine-phosphorylated proteins in focal adhesions using fluorescence resonance energy transfer. J. Cell Sci. 119, 866–875 (2006)

    Article  Google Scholar 

  53. B. Zimerman, T. Volberg, B. Geiger, Early molecular events in the assembly of the focal adhesion-stress fiber complex during fibroblast spreading. Cell Motil. Cytoskeleton. 58, 143–159 (2004)

    Article  Google Scholar 

  54. C.M. Longhurst, L.K. Jennings, Integrin-mediated signal transduction. Cell. Mol. Life Sci. 54, 514–526 (1998)

    Article  Google Scholar 

  55. F.G. Giancotti, E. Ruoslahti, Integrin signaling. Science 285, 1028–1033 (1999)

    Article  Google Scholar 

  56. M.P. Sheetz, D. Felsenfeld, C.G. Galbraith, D. Choquet, Cell migration as a five-step cycle. Biochem. Soc. Symp. 65, 233–243 (1999)

    Google Scholar 

  57. D.A. Lauffenburger, A.F. Horwitz, Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996)

    Article  Google Scholar 

  58. A. van der Flier, A. Sonnenberg, Function and interactions of integrins. Cell Tissue Res. 305, 285–298 (2001)

    Article  Google Scholar 

  59. S. Huveneers, H. Truong, E.H.J. Danen, Integrins: signaling, disease and therapy. Int. J. Radiat. Biol. 83, 743–751 (2007)

    Article  Google Scholar 

  60. U. Mayer, G. Saher, R. Faessler, A. Bornemann, F. Echtermeyer, H. von der Mark, N. Miosge, E. Poesch, K. von der Mark Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Nat. Genet. 17, 318–323 (1997)

    Article  Google Scholar 

  61. Y.K. Hayashi, F.-L. Chou, E. Engvall, M. Ogawa, C. Matsuda, S. Hirabayashi, K. Yokochi, B.L. Ziober, R.H. Kramer, S.J. Kaufman, E. Ozawa, Y. Goto, I. Nonaka, T. Tsukahara, J. Wang, E.P. Hoffman, K. Arahata, Mutations in the integrin alpha 7 gene cause congenital myopathy. Nat. Genet. 19, 94–97 (1998)

    Article  Google Scholar 

  62. F. Vidal, D. Aberdam, C. Miquel, A.M. Christiano, L. Pulkkinen, J. Uitto, J.-P. Ortonne, G. Meneguzzi, Integrin Beta 4 mutations associated with junctional epidermolysis bullosa with pyloric atresia. Nat. Genet. 10, 229–234 (1995)

    Article  Google Scholar 

  63. C.M. Niessen, L.M.H. van der Raaij-Helmer, E.H.M. Hulsman, R. van der Neut, M.F. Jonkman, A. Sonnenberg, Deficiency of the integrin beta 4 subunit in junctional epidermolysis bullosa with pyloric atresia: consequences for hemidesmosome formation and adhesion properties. J. Cell Sci. 109, 1695–1706 (1996)

    Google Scholar 

  64. L. Ruzzi, L. Gagnoux-Palacios, M. Pinola, S. Belli, G. Meneguzzi, M. D'Alessio, G. Zambruno, A homozygous mutation in the integrin alpha6 gene in junctional epidermolysis bullosa with pyloric atresia. J. Clin. Invest. 99, 2826–2831 (1997)

    Article  Google Scholar 

  65. N. Hogg, P.A. Bates, Genetic analysis of integrin function in man: lad-1 and other syndromes. Matrix Biol. 19, 211–222 (2000)

    Article  Google Scholar 

  66. S.P. Palecek, J.C. Loftus, M.H. Ginsberg, D.A. Lauffenburger, A.F. Horwitz, Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385, 537–540 (1997)

    Article  Google Scholar 

  67. Y. Xue, M.L. O’Mara, P.P.T. Surawski, M. Trau, A.E. Mark, Effect of poly(ethylene glycol) (peg) spacers on the conformational properties of small peptides: a molecular dynamics study. Langmuir 27, 296–303 (2011)

    Article  Google Scholar 

  68. S. Rao, K.W. Anderson, L.G. Bachas, Oriented immobilization of proteins. Mikrochimica Acta 128, 127–143 (1998)

    Article  Google Scholar 

  69. J. Huang, S.V. Graeter, F. Corbellini, S. Rinck, E. Bock, R. Kemkemer, H. Kessler, J. Ding, J.P. Spatz, Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett. 9, 1111–1116 (2009)

    Article  Google Scholar 

  70. S. Sant, M.J. Hancock, J.P. Donnelly, D. Iyer, A. Khademhosseini, Biomimetic gradient hydrogels for tissue engineering. Can. J. Chem. Eng. 88, 899–911 (2010)

    Article  Google Scholar 

  71. J.H. Lee, G. Khang, J.W. Lee, H.B. Lee, Interaction of different types of cells on polymer surfaces with wettability gradient. J. Coll. Interface Sci. 205, 323–330 (1998)

    Article  Google Scholar 

  72. R.J. Pelham, Y. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. U. S. A. 94, 13661–13665 (1997)

    Article  Google Scholar 

  73. D.E. Discher, P. Janmey, Y. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005)

    Article  Google Scholar 

  74. J.-P. Kaiser, A. Reinmann, A. Bruinink, The effect of topographic characteristics on cell migration velocity. Biomaterials 27, 5230–5241 (2006)

    Article  Google Scholar 

  75. J.L. West, J.A. Hubbell, Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32, 241–244 (1999)

    Article  Google Scholar 

  76. J.B. McCarthy, S.L. Palm, L.T. Furcht, Migration by haptotaxis of a schwann cell tumor line to the basement membrane glycoprotein laminin. J. Cell Biol. 97, 772–777 (1983)

    Article  Google Scholar 

  77. S.B. Carter, Haptotaxis and the mechanism of cell motility. Nature 213, 256–260 (1967)

    Article  Google Scholar 

  78. B. Harland, S. Walcott, S.X. Sun, Adhesion dynamics and durotaxis in migrating cells. Phys. Biol. 8, 015011 (2011)

    Article  Google Scholar 

  79. L.G. Vincent, Y.S. Choi, B. Alonso-Latorre, J.C. del Alamo, A.J. Engler, Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol. J. 8, 472–484 (2013)

    Article  Google Scholar 

  80. M.D. Pierschbacher, E. Ruoslahti, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30–33 (1984)

    Article  Google Scholar 

  81. I. Schvartz, D. Seger, S. Shaltiel, Vitronectin. Int. J. Biochem. Cell Biol. 31, 539–544 (1999)

    Article  Google Scholar 

  82. L. Liaw, V. Lindner, S.M. Schwartz, A.F. Chambers, C.M. Giachelli, osteopontin and beta 3 integrin are coordinately expressed in regenerating endothelium in vivo and stimulate Arg-Gly-Asp–dependent endothelial migration in vitro. Circ. Res. 77, 665–672 (1995)

    Article  Google Scholar 

  83. K.M. Malinda, H.K. Kleinman, The laminins. Int. J. Biochem. Cell. Biol. 28, 957–959 (1996)

    Article  Google Scholar 

  84. A.V. Taubenberger, M.A. Woodruff, H. Bai, D.J. Muller, D.W. Hutmacher, The effect of unlocking RGD-motifs in collagen I on Pre-osteoblast adhesion and differentiation. Biomaterials 31, 2827–2835 (2010)

    Article  Google Scholar 

  85. E. Ruoslahti, RGD and other recognition sequences for integrins. Annu. Rev. Cell. Dev. Biol. 12, 697–715 (1996)

    Article  Google Scholar 

  86. M.C. Farach-Carson, R.C. Wagner, K.L. Kiick, In Tissue Engineering, ed. by J.P. Fisher, A.G. Mikos, J.D. Bronzino, Extracellular matrix: structure, function, and applications to tissue engineering. (CRC Press, Boca Raton, 2007), pp. 3–1 to 3–22

    Google Scholar 

  87. J.E. Frith, R.J. Mills, J.E. Hudson, J.J. Cooper-White, Tailored integrin-extracellular matrix interactions to direct human mesenchymal stem cell differentiation. Stem Cells Dev. 21, 2442–2456 (2012)

    Article  Google Scholar 

  88. T.H. Barker, The role of ecm proteins and protein fragments in guiding cell behavior in regenerative medicine. Biomaterials 32, 4211–4214 (2011)

    Article  Google Scholar 

  89. S.P. Massia, J.A. Hubbell, Vascular endothelial cell adhesion and spreading promoted by the peptide redv of the iiics region of plasma fibronectin is mediated by integrin alpha 4 beta 1. J. Biol. Chem. 267, 14019–14026 (1992)

    Google Scholar 

  90. A.M. Wojtowicz, A. Shekaran, M.E. Oest, K.M. Dupont, K.L. Templeman, D.W. Hutmacher, R.E. Guldberg, A.J. Garcia, Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials 31, 2574–2582 (2010)

    Article  Google Scholar 

  91. Y.Q. Liu, D.R. Senger, Matrix-specific activation of src and rho initiates capillary morphogenesis of endothelial cells. Faseb. J. 18, 457–468 (2004)

    Article  Google Scholar 

  92. M. Arnold, V.C. Hirschfeld-Warneken, T. Lohmueller, P. Heil, J. Bluemmel, E.A. Cavalcanti-Adam, M. López-García, P. Walther, H. Kessler, B. Geiger, J.P. Spatz, Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing. Nano Lett. 8, 2063–2069 (2008)

    Article  Google Scholar 

  93. U. Hersel, C. Dahmen, H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24, 4385–4415 (2003)

    Article  Google Scholar 

  94. G.A. Monteiro, A.V. Fernandes, H.G. Sundararaghavan, D.I. Shreiber, Positively and negatively modulating cell adhesion to type i collagen via peptide grafting. Tissue Eng. Part A. 17, 1663–1673 (2009)

    Article  Google Scholar 

  95. D.L. Hern, J.A. Hubbell, Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. 39, 266–276 (1997)

    Article  Google Scholar 

  96. A.S. Gobin, J.L. West, Effects of epidermal growth factor on fibroblast migration through biomimetic hydrogels. Biotechnol. Prog. 19, 1781–1785 (2003)

    Article  Google Scholar 

  97. C.L. Jackson, M.A. Reidy, Basic fibroblast growth factor: its role in the control of smooth muscle cell migration. Am. J. Pathol. 143, 1024–1031 (1993)

    Google Scholar 

  98. S.A. DeLong, J.J. Moon, J.L. West, Covalently immobilized gradients of Bfgf on hydrogel scaffolds for directed cell migration. Biomaterials 26, 3227–3234 (2005)

    Article  Google Scholar 

  99. J.E. Leslie-Barbick, C. Shen, C. Chen, J.L. West, Micron-scale spatially patterned, covalently immobilized vascular endothelial growth factor on hydrogels accelerates endothelial tubulogenesis and increases cellular angiogenic responses. Tissue Eng. Part A. 17, 221–229 (2011)

    Article  Google Scholar 

  100. G.S. Schultz, A. Wysocki, Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 17, 153–162 (2009)

    Article  Google Scholar 

  101. H.L. Ashe, J. Briscoe, The interpretation of morphogen gradients. Development 133, 385–394 (2006)

    Article  Google Scholar 

  102. K.S. Midwood, G. Orend, The role of tenascin-C in tissue injury and tumorigenesis. J. Cell. Commun. Signal. 3, 287–310 (2009)

    Article  Google Scholar 

  103. Z. Lopez-Dee, K. Pidcock, L.S. Gutierrez, Thrombospondin-1: multiple paths to inflammation. Mediat. Inflamm. 2011, 1–10 (2011)

    Article  Google Scholar 

  104. S.A. Arnold, R.A. Brekken, Sparc: a matricellular regulator of tumorigenesis. J. Cell. Commun. Signal. 3, 255–273 (2009)

    Article  Google Scholar 

  105. A.E. Rodda, L. Meagher, D.R. Nisbet, J.S. Forsythe, Specific control of cell-material interactions: targeting cell receptors using ligand-functionalized polymer substrates. Prog. Polym. Sci. 39, 1312–1347 (2014)

    Article  Google Scholar 

  106. R. Vasita, K. Shanmugam, D.S. Katti, Improved biomaterials for tissue engineering applications—surface modification of polymers. Curr. Top. Med. Chem. 8, 341–353 (2008)

    Article  Google Scholar 

  107. J.H. Slater, J.S. Miller, S.S. Yu, J.L. West, Fabrication of multifaceted micropatterned surfaces with laser scanning lithography. Adv. Funct. Mater. 21, 2876–2888 (2011)

    Article  Google Scholar 

  108. M.S. Hahn, J.S. Miller, J.L. West, Laser scanning lithography for surface micropatterning on hydrogels. Adv. Mater. 17, 2939–2942 (2005)

    Article  Google Scholar 

  109. J.H. Slater, J.C. Culver, B.L. Long, C.W. Hu, J. Hu, T.F. Birk, A.A. Qutub, M.E. Dickinson, J.L. West, Recapitulation and modulation of the cellular architecture of a user-chosen cell of interest using cell-derived, biomimetic patterning. ACS Nano 9, 6128–6138 (2015)

    Article  Google Scholar 

  110. J.H. Slater, J.L. West, Fabrication of multifaceted, micropatterned surfaces and image-guided patterning using laser scanning lithography. Methods. Cell. Biol. 119, 193–217 (2014)

    Article  Google Scholar 

  111. J.C. Culver, J.C. Hoffmann, R.A. Poché, J.H. Slater, J.L. West, M.E. Dickinson, Three-dimensional biomimetic patterning in hydrogels to guide cellular organization. Adv. Mater. 24, 2344–2348 (2012)

    Article  Google Scholar 

  112. S.R.K. Vedula, H. Hirata, M.H. Nai, A. Brugues, Y. Toyama, X. Trepat, C.T. Lim, B. Ladoux, Epithelial bridges maintain tissue integrity during collective cell migration. Nat. Mater. 13, 87–96 (2013)

    Article  Google Scholar 

  113. J. Goulpeau, B. Lonetti, D. Trouchet, A. Ajdari, P. Tabeling, Building up longitudinal concentration gradients in shallow microchannels. Lab. Chip. 7, 1154–1161 (2007)

    Article  Google Scholar 

  114. S. Allazetta, S. Cosson, M.P. Lutolf, Programmable microfluidic patterning of protein gradients on hydrogels. Chem. Commun. 47, 191–193 (2011)

    Article  Google Scholar 

  115. R. Glass, M. Moeller, J.P. Spatz, Block copolymer micelle nanolithography. Nanotechnology 14, 1153–1160 (2003)

    Article  Google Scholar 

  116. G.T. Hermanson, Bioconjugate Techniques (Academic Press, Waltham, 2008), p. 1323

    Google Scholar 

  117. K.-B. Lee, S.-J. Park, C.A. Mirkin, J.C. Smith, M. Mrksich, Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002)

    Article  Google Scholar 

  118. D.S. Ginger, H. Zhang, C.A. Mirkin, The evolution of dip-pen nanolithography. Angew. Chem. Int. Ed. Eng. 43, 30–45 (2004)

    Article  Google Scholar 

  119. J.H. Slater, P.J. Boyce, M.P. Jancaitis, H.E. Gaubert, A.L. Chang, M.K. Markey, W. Frey, Modulation of endothelial cell migration via manipulation of adhesion site growth using nanopatterned surfaces. ACS. Appl. Mater. Interfaces. 7, 4390–4400 (2015)

    Article  Google Scholar 

  120. J.H. Slater, W. Frey, Nanopatterning of fibronectin and the influence of integrin clustering on endothelial cell spreading and proliferation. J. Biomed. Mater. Res. Part A. 87A, 176–195 (2008)

    Article  Google Scholar 

  121. V. Vogel, M. Sheetz,Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell. Biol. 7, 265–275 (2006)

    Article  Google Scholar 

  122. S.F. Badylak, D.O. Freytes, T.W. Gilbert, Extracellular matrix as a biological scaffold material: structure and function. Acta. Biomater. 5, 1–13 (2009)

    Article  Google Scholar 

  123. K. Poole, K. Khairy, J. Friedrichs, C. Franz, D.A. Cisneros, J. Howard, D. Mueller, Molecular-scale topographic cues induce the orientation and directional movement of fibroblasts on two-dimensional collagen surfaces. J. Mol. Biol. 349, 380–386 (2005)

    Article  Google Scholar 

  124. G. Maheshwari, G. Brown, D.A. Lauffenburger, A. Wells, L.G. Griffith Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell. Sci. 113, 1677–1686 (2000)

    Google Scholar 

  125. J.E. Frith, R.J. Mills, J.J. Cooper-White, Lateral spacing of adhesion peptides influences human mesenchymal stem cell behaviour. J. Cell. Sci. 125, 317–327 (2012)

    Article  Google Scholar 

  126. M. Arnold, E.A. Cavalcanti-Adam, R. Glass, J. Bluemmel, W. Eck, M. Kantlehner, H. Kessler, J.P. Spatz, Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem 5, 383–388 (2004)

    Article  Google Scholar 

  127. D.R. Critchley, A.R. Gingras, Talin at a glance. J. Cell. Sci. 121, 1345–1347 (2008)

    Article  Google Scholar 

  128. M. Schvartzman, M. Palma, J. Sable, J. Abramson, X. Hu, M.P. Sheetz, S.J. Wind, Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level. Nano Lett. 11, 1306–1312 (2011)

    Article  Google Scholar 

  129. K.A. Diehl, J.D. Foley, P.F. Nealey, C.J. Murphy, Nanoscale topography modulates corneal epithelial cell migration. J. Biomed. Mater. Res. A. 75A, 603–611 (2005)

    Article  Google Scholar 

  130. E. Lamers, J.T. Riet, M. Domanski, R. Luttge, C.G. Figdor, J.G.E. Gardeniers, X.F. Walboomers, J.A. Jansen, Dynamic cell adhesion and migration on nanoscale grooved substrates. Eur. Cell. Mater. 23, 182–194 (2012)

    Google Scholar 

  131. J.Y. Lim, H.J. Donahue Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue. Eng. 13, 1879–1891 (2007)

    Article  Google Scholar 

  132. L.E. Dickinson, D.R. Rand, J. Tsao, W. Eberle, S. Gerecht, Endothelial cell responses to micropillar substrates of varying dimensions and stiffness. J. Biomed. Mater. Res. A. 100A, 1457–1466 (2012)

    Article  Google Scholar 

  133. S.A. Biela, Y. Su, J.P. Spatz, R. Kemkemer, Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range. Acta. Biomater. 5, 2460–2466 (2009)

    Article  Google Scholar 

  134. J.J. Moon, M.S. Hahn, I. Kim, B.A. Nsiah, J.L. West, Micropatterning of poly (ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue. Eng. Part A. 15, 579–585 (2008)

    Article  Google Scholar 

  135. M.M. Martino, F. Tortelli, M. Mochizuki, S. Traub, D. Ben-David, G.A. Kuhn, R. Mueller, E. Livne, S.A. Eming, J.A. Hubbell, Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci. Transl. Med. 3, 100ra89 (2011)

    Article  Google Scholar 

  136. M.M. Martino, P.S. Briquez, A. Ranga, M.P. Lutolf, J.A. Hubbell, Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc. Natl. Acad. Sci. U S A. 110, 4563–4568 (2013)

    Article  Google Scholar 

  137. M.M. Martino, P.S. Briquez, E. Guc, F. Tortelli, W.W. Kilarski, S. Metzger, J.J. Rice, G.A. Kuhn, R. Mueller, M.A. Swartz, J.A. Hubbell, Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science 343, 885–888 (2014)

    Article  Google Scholar 

  138. B. Trappmann, C.S. Chen, How cells sense extracellular matrix stiffness: a material's perspective. Curr. Opin. Biotechnol. 24, 948–953 (2013)

    Article  Google Scholar 

  139. R.G. Wells, The role of matrix stiffness in regulating cell behavior. Hepatology 47, 1394–1400 (2008)

    Article  Google Scholar 

  140. C.-M. Lo, H.-B. Wang, M. Dembo, Y. Wang, Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000)

    Article  Google Scholar 

  141. S.C. Wei, L. Fattet, J.H. Tsai, Y. Guo, V.H. Pai, H.E. Majeski, A.C. Chen, R.L. Sah, S.S. Taylor, A.J. Engler, J. Yang, Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a twist1-G3bp2 mechanotransduction pathway. Nat. Cell. Biol. 17, 678–688 (2015)

    Article  Google Scholar 

  142. J.H. Wen, L.G. Vincent, A. Fuhrmann, Y.S. Choi, K.C. Hribar, H. Taylor-Weiner, S. Chen, A.J. Engler, Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat. Mater. 13, 979–987 (2014)

    Article  Google Scholar 

  143. J.R. Tse, A.J. Engler, Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE 6, 9 (2011)

    Google Scholar 

  144. F. Rehfeldt, A.J. Engler, A. Eckhardt, F. Ahmed, D.E. Discher, Cell responses to the mechanochemical microenvironment–implications for regenerative medicine and drug delivery. Adv. Drug. Deliv. Rev. 59, 1329–1339 (2007)

    Article  Google Scholar 

  145. A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)

    Article  Google Scholar 

  146. C.-H.R. Kuo, J. Xian, J.D. Brenton, K. Franze, E. Sivaniah, Complex stiffness gradient substrates for studying mechanotactic cell migration. Adv. Mater. 24, 6059–6064 (2012)

    Article  Google Scholar 

  147. J.Hc Wang, B. Li, in Microscopy: Science, Technology, Applications, and Education, vol.1, ed. A. Mendez-Vilas, J.Diaz The principles and biological applications of cell traction force microscopy. (2010), 449–458

    Google Scholar 

  148. H. Zhang, L. Wang, L. Song, G. Niu, H. Cao, G. Wang, H. Yang, S. Zhu, Controllable properties and microstructure of hydrogels based on crosslinked poly (ethylene glycol) diacrylates with different molecular weights. J. Appl. Polym. Sci. 121, 531–540 (2011)

    Article  Google Scholar 

  149. J.H. Sung, M.-R. Hwang, J.O. Kim, J.H. Lee, Y.I. Kim, J.H. Kim, S.W. Chang, S.G. Jin, J.A. Kim, W.S. Lyoo, S.S. Han, S.K. Ku, C.S. Yong, H.-G. Choi, Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int. J. Pharm. 392, 232–240 (2010)

    Article  Google Scholar 

  150. G.M. Harris, M.E. Piroli, E. Jabbarzadeh, Deconstructing the effects of matrix elasticity and geometry in mesenchymal stem cell lineage commitment. Adv. Funct. Mater. 24, 2396–2403 (2014)

    Article  Google Scholar 

  151. J.Y. Wong, A. Velasco, P. Rajagopalan, Q. Pham, Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19, 1908–1913 (2003)

    Article  Google Scholar 

  152. S. Nemir, H.N. Hayenga, J.L. West, Pegda hydrogels with patterned elasticity: novel tools for the study of cell response to substrate rigidity. Biotechnol. Bioeng. 105, 636–644 (2010)

    Article  Google Scholar 

  153. N. Zaari, P. Rajagopalan, S.K. Kim, A.J. Engler, J.Y. Wong, Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv. Mater. 16, 2133–2137 (2004)

    Article  Google Scholar 

  154. S. Sen, A.J. Engler, D.E. Discher, Matrix strains induced by cells: computing how far cells can feel. Cell. Mol. Bioeng. 2, 39–48 (2009)

    Article  Google Scholar 

  155. J. Maloney, E. Walton, C. Bruce, K. Van Vliet, Influence of finite thickness and stiffness on cellular adhesion-induced deformation of compliant substrata. Phys. Rev. E. 78, 041923 (2008)

    Article  Google Scholar 

  156. D.S. Gray, J. Tien, C.S. Chen, Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s Modulus. J. Biomed. Mater. Res. A. 66, 605–614 (2003)

    Article  Google Scholar 

  157. S. Kidoaki, T. Matsuda, Microelastic gradient gelatinous gels to induce cellular mechanotaxis. J. Biotechnol. 133, 225–230 (2008)

    Article  Google Scholar 

  158. E.L. Baker, J. Srivastava, D. Yu, R.T. Bonnecaze, M.H. Zaman, Cancer cell migration: integrated roles of matrix mechanics and transforming potential. PLoS ONE 6, 3700–3711 (2011)

    Google Scholar 

  159. R. McBeath, D.M. Pirone, C.M. Nelson, K. Bhadriraju, C.S. Chen, Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment. Dev. Cell. 6, 483–495 (2004)

    Article  Google Scholar 

  160. K.A. Kilian, B. Bugarija, B.T. Lahn, M. Mrksich, Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. U S A. 107, 4872–4877 (2010)

    Article  Google Scholar 

  161. M. Thery, Micropatterning as a tool to decipher cell morphogenesis and functions. J. Cell Sci. 123, 4201–4213 (2010).

    Article  Google Scholar 

  162. R. Singhvi, A. Kumar, G.P. Lopez, G.N. Stephanopoulos, D.I.C. Wang, G.M. Whitesides, D.E. Ingber, Engineering cell-shape and function. Science 264, 696–698 (1994)

    Article  Google Scholar 

  163. M. Thery, V. Racine, M. Piel, A. Pepin, A. Dimitrov, Y. Chen, J.B. Sibarita, M. Bornens, Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl. Acad. Sci. U S A. 103, 19771–19776 (2006)

    Article  Google Scholar 

  164. J. James, E.D. Goluch, H. Hu, C. Liu, M. Mrksich, Subcellular curvature at the perimeter of micropatterned cells influences lamellipodial distribution and cell polarity. Cell. Motil. Cytoskeleton. 65, 841–852 (2008)

    Article  Google Scholar 

  165. N. Xia, C.K. Thodeti, T.P. Hunt, Q.B. Xu, M. Ho, G.M. Whitesides, R. Westervelt, D.E. Ingber, Directional control of cell motility through focal adhesion positioning and spatial control of rac activation. Faseb. J. 22, 1649–1659 (2008)

    Article  Google Scholar 

  166. J.M. Goffin, P. Pittet, G. Csucs, J.W. Lussi, J.J. Meister, B. Hinz, Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J. Cell Biol. 172, 259–268 (2006)

    Article  Google Scholar 

  167. D. Lehnert, B. Wehrle-Haller, C. David, U. Weiland, C. Ballestrem, B.A. Imhof, M. Bastmeyer, Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. J. Cell Sci. 117, 41–52 (2004)

    Article  Google Scholar 

  168. J.A. Deeg, I. Louban, D. Aydin, C. Selhuber-Unkel, H. Kessler, J.P. Spatz, Impact of local versus global ligand density on cellular adhesion. Nano. Lett. 11, 1469–1476 (2011)

    Article  Google Scholar 

  169. M. Thery, A. Pepin, E. Dressaire, Y. Chen, M. Bornens, Cell distribution of stress fibres in response to the geometry of the adhesive environment. Cell. Motil. Cytoskeleton. 63, 341–355 (2006)

    Article  Google Scholar 

  170. W.F. Liu, C.S. Chen, Cellular and multicellular form and function. Adv Drug Deliv. Rev. 59, 1319–1328 (2007)

    Article  Google Scholar 

  171. S. Huang, D.E. Ingber, The structural and mechanical complexity of cell-growth control. Nat. Cell. Biol. 1, E131–138 (1999)

    Article  Google Scholar 

  172. R.A. Foty, M.S. Steinberg, The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255–263 (2005)

    Article  Google Scholar 

  173. J. Lee, A.A. Abdeen, D. Zhang, K.A. Kilian, Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 34, 8140–8148 (2013)

    Article  Google Scholar 

  174. P.C.D.P. Dingal, D.E. Discher, Combining insoluble and soluble factors to steer stem cell fate. Nat. Mater. 13, 532–537 (2014)

    Article  Google Scholar 

  175. W.F. Liu, C.M. Nelson, D.M. Pirone, C.S. Chen, E-cadherin engagement stimulates proliferation via Rac1. J. Cell. Biol. 173, 431–441 (2006)

    Article  Google Scholar 

  176. Y. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998)

    Article  Google Scholar 

  177. C.J. Shen, S. Raghavan, Z. Xu, J.D. Baranski, X. Yu, M.a. Wozniak, J.S. Miller, M. Gupta, L. Buckbinder, C.S. Chen, Decreased cell adhesion promotes angiogenesis in a Pyk2-dependent manner. Exp. Cell. Res. 317, 1860–1871 (2011)

    Article  Google Scholar 

  178. N.Q. Balaban, U.S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, B. Geiger, Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell. Biol. 3, 466–472 (2001)

    Article  Google Scholar 

  179. S.M. Frisch, K. Vuori, E. Ruoslahti, P.Y. Chan-Hui, Control of adhesion-dependent cell survival by focal adhesion kinase. J. Cell. Biol. 134, 793–799 (1996)

    Article  Google Scholar 

  180. A. Hamadi, M. Bouali, M. Dontenwill, H. Stoeckel, K. Takeda, P. Rondé, Regulation of focal adhesion dynamics and disassembly by phosphorylation of fak at tyrosine 397. J. Cell. Sci. 118, 4415–4425 (2005)

    Article  Google Scholar 

  181. C. Lieu, S. Kpoetz, The Src family of protein tyrosine kinases: a new and promising traget for colorectal cancer therapy. Clin. Colorectal. Cancer. 9, 89–94 (2010)

    Article  Google Scholar 

  182. S.-Y. Tee, J. Fu, C.S. Chen, P.A. Janmey, Cell shape and substrate rigidity both regulate cell stiffness. Biophys. J. 100, L25–27 (2011)

    Article  Google Scholar 

  183. K. Shin, V.C. Fogg, B. Margolis, Tight junctions and cell polarity. Annu. Rev. Cell. Dev. Biol. 22, 207–235 (2006)

    Article  Google Scholar 

  184. B.M. Gumbiner, Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell. Biol. 6, 622–634 (2005)

    Article  Google Scholar 

  185. I. Gutcher, B. Becher, Apc-derived cytokines and t cell polarization in autoimmune inflammation. J. Clin. Invest. 117, 1119–1127 (2007)

    Article  Google Scholar 

  186. J.I. Nagy, F.E. Dudek, J.E. Rash, Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain. Res. Brain. Res. Rev. 47, 191–215 (2004)

    Article  Google Scholar 

  187. K. Sugimoto, N. Ichikawa-Tomikawa, S. Satohisa, Y. Akashi, R. Kanai, T. Saito, N. Sawada, H. Chiba, The tight-junction protein claudin-6 induces epithelial differentiation from mouse F9 and embryonic stem cells. PloS ONE 8, e75106 (2013)

    Article  Google Scholar 

  188. N. Borghi, M. Lowndes, V. Maruthamuthu, M.L. Gardel, W.J. Nelson, Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions. Proc. Natl. Acad. Sci. U S A. 107, 13324–13329 (2010)

    Article  Google Scholar 

  189. C. Rüffer, V. Gerke, The C-terminal cytoplasmic tail of claudins 1 and 5 but not its Pdz-binding motif is required for apical localization at epithelial and endothelial tight junctions. Eur. J. Cell. Biol. 83, 135–144 (2004)

    Article  Google Scholar 

  190. A.J. Torres, R.L. Contento, S. Gordo, K.W. Wucherpfennig, J.C. Love, Functional single-cell analysis of T-cell activation by supported lipid bilayer-tethered ligands on arrays of nanowells. Lab. Chip. 13, 90–99 (2013)

    Article  Google Scholar 

  191. L.K. Buehler, K.A. Stauffer, N.B. Gilula, N.M. Kumar, Single channel behavior of recombinant beta 2 gap junction connexons reconstituted into planar lipid bilayers. Biophy. J. 68, 1767–1775 (1995)

    Article  Google Scholar 

  192. R. Tsuruta, R.R. Cobb, M. Mastrangelo, E. Lazarides, P.M. Cardarelli, C. Ltc, Soluble vascular cell adhesion molecule (VCAM)-Fc fusion protein induces leukotriene C4 secretion in platelet-activating factor-stimulated eosinophils abstract: eosinophil adhesion to vascular cell adhesion molecule-1 (Vcam-1) is important for cell. J Leukoc Biol. 65, 71–79 (1999)

    Google Scholar 

  193. J. Gavard, J.S. Gutkind, Vegf controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of Ve-cadherin. Nat. Cell. Biol. 8, 1223–1234 (2006)

    Article  Google Scholar 

  194. F. Drees, A. Reilein, W.J. Nelson, Cell-adhesion assays: fabrication of an E-cadherin substratum and isolation of lateral and basal membrane patches. Methods. Mol. Biol. 294, 303–320 (2005)

    Google Scholar 

  195. T. Ozawa, M. Horii, E. Kobayashi, A. Jin, H. Kishi, A. Muraguchi, The binding affinity of a soluble Tcr-Fc fusion protein is significantly improved by crosslinkage with an anti-Cb antibody. Biochem. Biophys. Res. Commun. 422, 245–249 (2012)

    Article  Google Scholar 

  196. T.D. Perez, W.J. Nelson, S.G. Boxer, L. Kam, E-cadherin tethered to micropatterned supported lipid bilayers as a model for cell adhesion. Langmuir 21, 11963–11968 (2005)

    Article  Google Scholar 

  197. C.-J. Huang, N.-J. Cho, C.-J. Hsu, P.-Y. Tseng, C.W. Frank, Y.-C. Chang, Type I collagen-functionalized supported lipid bilayer as a cell culture platform. Biomacromolecules 11, 1231–1240 (2010)

    Article  Google Scholar 

  198. J.T. Groves, M.L. Dustin, Supported planar bilayers in studies on immune cell adhesion and communication. J. Immunol. Methods. 278, 19–32 (2003)

    Article  Google Scholar 

  199. K. Shen, V.K. Thomas, M.L. Dustin, L.C. Kam, Micropatterning of costimulatory ligands enhances Cd4 + T cell function. Proc. Natl. Acad. Sci. U S A. 105, 7791–7796 (2008)

    Article  Google Scholar 

  200. L. Geppert, Semiconductor lithography for the next millennium. Spectrum, IEEE 33–38 (1996)

    Google Scholar 

  201. D. Fichtner, B. Lorenz, S. Engin, C. Deichmann, M. Oelkers, A. Janshoff, A. Menke, D. Wedlich, C.M. Franz, Covalent and density-controlled surface immobilization of e-cadherin for adhesion force spectroscopy. PloS One 9, e93123 (2014)

    Article  Google Scholar 

  202. K. Czöndör, M. Garcia, A. Argento, A. Constals, C. Breillat, B. Tessier, O. Thoumine, Micropatterned substrates coated with neuronal adhesion molecules for high-content study of synapse formation. Nat. Commun. 4, 2252 (2013)

    Article  Google Scholar 

  203. P. Shi, K. Shen, L.C. Kam, Local presentation of L1 and N-cadherin in multicomponent, microscale patterns differentially direct neuron function in vitro. Dev. Neurobiol. 67, 1765–1776 (2007)

    Article  Google Scholar 

  204. A.D. Doyle, F.W. Wang, K. Matsumoto, K.M. Yamada, One-dimensional three-dimensional underlies topography fibrillar cell migration. J. Cell. Biol. 184, 481–490 (2014)

    Article  Google Scholar 

  205. J.H. Slater, J.L. West, Fabrication of Multifaceted, Micropatterned Surfaces and Image-Guided Patterning Using Laser Scanning Lithography, 1st ed., vol. 119 (Elsevier Inc., Amsterdam, 2014), p 193–217

    Google Scholar 

  206. E.T. Castellana, P.S. Cremer, Solid supported lipid bilayers: from biophysical studies to sensor design. Surface. Sci. Rep. 61, 429–444 (2006)

    Article  Google Scholar 

  207. P. Mueller, D.O. Rudin, H.T. Tien, W.C. Wescott, Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194, 979–980 (1962)

    Article  Google Scholar 

  208. K.L. Weirich, J.N. Israelachvili, D.K. Fygenson, Bilayer edges catalyze supported lipid bilayer formation. Biophys. J. 98, 85–92 (2010)

    Article  Google Scholar 

  209. K. Funakoshi, H. Suzuki, S. Takeuchi, Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal. Chem. 78, 8169–8174 (2006)

    Article  Google Scholar 

  210. J.T. Groves, N. Ulman, S.G. Boxer, Micropatterning fluid lipid bilayers on solid supports. Science 275, 651–653 (1997)

    Article  Google Scholar 

  211. B.A. Suarez-isla, K. Wan, J. Lindstrom, M. Montal, Bio. Single-channel recordings from purified acetylcholine receptors.10 634–636 22(1983)

    Google Scholar 

  212. S.J. Johnson, T.M. Bayerl, D.C. McDermott, G.W. Adam, A.R. Rennie, R.K. Thomas, E. Sackmann Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys. J. 59, 289–294 (1991)

    Article  Google Scholar 

  213. T. Wang, D. Li, X. Lu, A. Khmaladze, X. Han, S. Ye, P. Yang, G. Xue, N. He, Z. Chen, Single lipid bilayers constructed on polymer cushion studied by sum frequency generation vibrational spectroscopy. J. Phys. Chem. C Nanomater. Interfaces. 115, 7613–7620 (2011)

    Article  Google Scholar 

  214. E. Sackmann, M. Tanaka, Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends. Biotechnol. 18, 58–64 (2000).

    Article  Google Scholar 

  215. S. Chevalier, C. Cuestas-Ayllon, V. Grazu, M. Luna, H. Feracci, J.M. de la Fuente, Creating biomimetic surfaces through covalent and oriented binding of proteins. Langmuir 26, 14707–14715 (2010)

    Article  Google Scholar 

  216. S.F. Evans, D. Docheva, A. Bernecker, C. Colnot, R.P. Richter, M.L. Knothe, Biomaterials solid-supported lipid bilayers to drive stem cell fate and tissue architecture using periosteum derived progenitor cells. Biomaterials 34, 1878–1887 (2013)

    Article  Google Scholar 

  217. D.J. Powell, B.L. Levine, Adoptive T-cell therapy for malignant disorders. Haematologica 93, 1452–1456 (2008).

    Article  Google Scholar 

  218. C.H. June, Adoptive T cell therapy for cancer in the clinic. J. Clin. Invest. 117, 1466–1476 (2007)

    Article  Google Scholar 

  219. E.R. Unanue, Antigen-presenting function of the macrophage. Annu. Rev. Immunol. 2, 395–428 (1984)

    Article  Google Scholar 

  220. A. Grakoui, S.K. Bromley, C. Sumen, M.M. Davis, The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999)

    Article  Google Scholar 

  221. M.M. Davis, M. Krogsgaard, J.B. Huppa, C. Sumen, M.a. Purbhoo, D.J. Irvine, L.C. Wu, L. Ehrlich, Dynamics of cell surface molecules during T cell recognition. Annu. Rev. Biochem. 72, 717–742 (2003)

    Article  Google Scholar 

  222. C.R.F. Monks, B.A. Freiberg, H. Kupfer, N. Sciaky, A. Kupfer, Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 340, 764–766 (1998)

    Google Scholar 

  223. E. Judokusumo, E. Tabdanov, S. Kumari, M.L. Dustin, L.C. Kam Mechanosensing in T lymphocyte activation. Biophys. J. 102, L5–7 (2012)

    Article  Google Scholar 

  224. K.T. Bashour, J. Tsai, K. Shen, J.-H. Lee, E. Sun, M.C. Milone, M.L. Dustin, L.C. Kam, Cross talk between Cd3 and Cd28 is spatially modulated by protein lateral mobility. Mol. Cell. Biol. 34, 955–964 (2014)

    Article  Google Scholar 

  225. R.G. Spatz, M. Martin, P. Joachim, Block copolymer micelle nanolithography. Nanotechnology 14, 1153 (2003)

    Article  Google Scholar 

  226. J. Matic, J. Deeg, A. Scheffold, I. Goldstein, J.P. Spatz, Fine tuning and efficient T cell activation with stimulatory Acd3 nanoarrays. Nano Lett. 13, 5090–5097 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Slater .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Slater, J., Banda, O., Heintz, K., Nie, H. (2016). Biomimetic Surfaces for Cell Engineering. In: Zhang, M., Naik, R., Dai, L. (eds) Carbon Nanomaterials for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-22861-7_18

Download citation

Publish with us

Policies and ethics