Biomimetic Approach to Designing Adhesive Hydrogels: From Chemistry to Application

Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 5)


Marine mussels secrete remarkable underwater adhesives that allow these organisms to anchor to surfaces in turbulent, intertidal zones. A unique amino acid, 3,4-dihydroxyphenylalanine (DOPA), is found in large abundance in these adhesive proteins and DOPA is responsible for both rapid curing of the adhesive and interfacial binding. Chemically linking DOPA and other catechol derivatives onto inert, synthetic polymers has imparted these materials with strong, water-resistant adhesive properties to various biological, metallic, and polymeric substrates. In this chapter, we review the mechanisms behind the unique interfacial binding and intermolecular cross-linking chemistries of DOPA and the use of DOPA in designing adhesive hydrogels with elevated adhesive strength and tunable physical and mechanical properties. The application of these bioadhesives as sealants and adhesives in wound healing, soft tissue reconstruction, immobilization of therapeutic cells, and drug delivery is described.


Achilles Tendon Fibrin Glue Tissue Adhesive Fetal Membrane Tendon Repair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge National Institutes of Health (GM104846) for financial support.


  1. 1.
    M. Hidalgo, M.J. Castillo, J.L. Eymar, A. Hidalgo, Lichtenstein inguinal hernioplasty: sutures versus glue. Hernia. 9, 242–244 (2005)CrossRefGoogle Scholar
  2. 2.
    J. Koniger, J. Redecke, M. Butters, Chronic pain after hernia repair: a randomized trial comparing Shouldice, Lichtenstein and TAPP. Langenbecks Arch. Surg. 389, 361–365 (2004)CrossRefGoogle Scholar
  3. 3.
    E. Stark, K. Oestreich, K. Wendl, B. Rumstadt, E. Hagmüller, Nerve irritation after laparoscopic hernia repair. Surg. Endosc. 13, 878–881 (1999)CrossRefGoogle Scholar
  4. 4.
    F.H. Berndsen, U. Petersson, D. Arvidsson, C.E. Leijonmarck, C. Rudberg, S. Smedberg, A. Montgomery, Discomfort five years after laparoscopic and Shouldice inguinal hernia repair: a randomised trial with 867 patients. Hernia. 12, 445–446 (2008)CrossRefGoogle Scholar
  5. 5.
    F.A. Barber, M.A. Herbert, M.H. Boothby, Ultimate tensile failure loads of a human dermal allograft rotator cuff augmentation. Arthroscopy. 24, 20–24 (2008)CrossRefGoogle Scholar
  6. 6.
    F.A. Barber, M.A. Herbert, D.A. Coons, Tendon augmentation grafts: biomechanical failure loads and failure patterns. Arthroscopy. 22, 534–538 (2006)CrossRefGoogle Scholar
  7. 7.
    M.J. Tingart, M. Apreleva, D. Zurakowski, J.J. Warner, Pullout strength of suture anchors used in rotator cuff repair. J. Bone Joint Surg. Am. 85-A, 2190–2198 (2003)Google Scholar
  8. 8.
    G.L.J. Caldwell, J.J. Warner, M.D. Miller, D. Boardman, J. Towers, R. Debski, Strength of fixation with transosseous sutures in rotator cuff repair. J. Bone Joint Surg. Am. 79, 1064–1068 (1997)Google Scholar
  9. 9.
    C. Gerber, A.G. Schneeberger, M. Beck, U. Schlegel, Mechanical strength of repairs of the rotator cuff. J. Bone Joint Surg. Am. 76-B, 371–380 (1994)Google Scholar
  10. 10.
    M. Djurasovic, G. Marra, J.S. Arroyo, R.G. Pollock, E.L. Flatow, L.U. Bigliani, Revision rotator cuff repair: factors influencing results. J. Bone Joint Surg. Am. 83-A, 1849–1855 (2001)Google Scholar
  11. 11.
    Y. Ikada, Tissue adhesives, in Wound Closure Biomaterials and Devices, ed. by C.C. Chu, J.A. von Fraunhofer, H.P. Greisler (CRC Press, Inc., Boca Raton, 1997), pp. 317–346Google Scholar
  12. 12.
    M. Mehdizadeh, H. Weng, D. Gyawali, L. Tang, J. Yang Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials. 33(32), 7972–7983 2012CrossRefGoogle Scholar
  13. 13.
    J.R. Eriksen, J.I. Bech, D. Linnemann, J. Rosenberg, Laparoscopic intraperitoneal mesh fixation with fibrin sealant (Tisseel) vs. titanium tacks: a randomised controlled experimental study in pigs. Hernia. 12, 483–491 (2008)CrossRefGoogle Scholar
  14. 14.
    E.J. Olivier ten Hallers, J.A. Jansen, H.A.M. Marres, G. Rakhorst, G.J. Verkerke Histological assessment of titanium and polypropylene fiber mesh implantation with and without fibrin tissue glue. J. Biomed Mater. Res. Part A. 80, 372–380 (2006)Google Scholar
  15. 15.
    R. Saltz, D. Sierra, D. Feldman, M.B. Saltz, A. Dimick, L.O. Vasconez, Experimental and clinical applications of fibrin glue. Plast. Reconstr. Surg. 88, 1005–1015 (1991) discussion 16–7CrossRefGoogle Scholar
  16. 16.
    H. Banninger, T. Hardegger, A. Tobler, A. Barth, P. Schupbach, W. Reinhart, B. Lammle, M. Furlan, Fibrin glue in surgery: frequent development of inhibitors of bovine thrombin and human factor V. Br. J. Haematol. 85, 528–532 (1993)CrossRefGoogle Scholar
  17. 17.
    D.M. Toriumi, W.F. Raslan, M. Friedman, M.E. Tardy Jr., Variable histotoxicity of histoacryl when used in a subcutaneous site: an experimental study. Laryngoscope. 101, 339–343 (1991)Google Scholar
  18. 18.
    M.F. Brothers, J.C. Kaufmann, A.J. Fox, J.P. Deveikis, n-Butyl 2-cyanoacrylate–substitute for IBCA in interventional neuroradiology: histopathologic and polymerization time studies. AJNR. Am. J. Neuroradiol. 10, 777–786 (1989)Google Scholar
  19. 19.
    H. Celik, H. Caner, K. Tahta, O.E. Ozcan, A. Erbengi, B. Onol, Nonsuture closure of arterial defect by vein graft using isobutyl-2-cyanoacrylate as a tissue adhesive. J. Neurosurg. Sci. 35, 83–87 (1991)Google Scholar
  20. 20.
    C.E. Gilbert, I. Grierson, D. McLeod, Retinal patching: a new approach to the management of selected retinal breaks. Eye. 3, 19–26 (1989)CrossRefGoogle Scholar
  21. 21.
    M.E. Hartnett, T. Hirose, Cyanoacrylate glue in the repair of retinal detachment associated with posterior retinal breaks in infants and children. Retina. 18, 125–129 (1998)CrossRefGoogle Scholar
  22. 22.
    A.R. Goldin, Control of duodenal haemorrhage with cyanoacrylate. Br. J. Radiol. 49, 583–588 (1976)CrossRefGoogle Scholar
  23. 23.
    T. Kakio, T. Ito, K. Sue, K. Sakaguchi, T. Shiota, T. Oka, H. Kobashi, N. Sakai, M. Omoto, M. Mikami, Hemostasis of gastric variceal hemorrhage by transileocoecal and transhepatic obliteration. Acta. Med. Okayama. 47, 39–43 (1993)Google Scholar
  24. 24.
    P.M. Bonutti, G.G. Weiker, J.T. Andrish, Isobutyl cyanoacrylate as a soft tissue adhesive: an in vitro study in the rabbit achilles tendon. Clin. Orthop. Relat. Res. 229, 241–248 (1988)Google Scholar
  25. 25.
    E.S. Powell, I.A. Trail, J. Noble, Non-suture repair of tendons. J. Biomed. Eng. 11, 215–218 (1989)CrossRefGoogle Scholar
  26. 26.
    C.E. Evans, G.C. Lees, I.A. Trail, Cytotoxicity of cyanoacrylate adhesives to cultured tendon cells. J. Hand. Surg. 24B, 658–661 (1999)CrossRefGoogle Scholar
  27. 27.
    Y.C. Tseng, Y. Tabata, S.H. Hyon, Y. Ikada, In vitro toxicity test of 2-cyanoacrylate polymers by cell culture method. J. Biomed. Mat. Res. 24, 1355–1367 (1990)CrossRefGoogle Scholar
  28. 28.
    M.F. Refojo, C.H. Dohlman, J. Koliopoulos, Adhesives in ophthalmology: a review. Surv. Ophthamol. 15, 217–236 (1971)Google Scholar
  29. 29.
    R.H. Fortelny, A.H. Petter-Puchner, N. Walder, R. Mittermayr, W. Öhlinger, A. Heinze, H. Redl, Cyanoacrylate tissue sealant impairs tissue integration of macroporous mesh in experimental hernia repair. Surg. Endosc. 21, 1781–1785 (2007)CrossRefGoogle Scholar
  30. 30.
    S.K. Jain, A. Vindal, Gelatin–resorcin–formalin (GRF) tissue glue as a novel technique for fixing prosthetic mesh in open hernia repair. Hernia. 13, 299–304 (2009)CrossRefGoogle Scholar
  31. 31.
    B.P. Lee, P.B. Messersmith, J.N. Israelachvili, J.H. Waite, Mussel-inspired adhesives and coatings. Annu. Rev. Mater Res 41, 99–132 (2011)CrossRefGoogle Scholar
  32. 32.
    J.H. Waite, Nature’s underwater adhesive specialist. Int. J. Adhes. Adhes. 7, 9–14 (1987)CrossRefGoogle Scholar
  33. 33.
    H. Yamamoto, Marine adhesive proteins and some biotechnological applications. Biotechnol. Genet. Eng. Rev. 13, 133–165 (1996)CrossRefGoogle Scholar
  34. 34.
    T.L. Coombs, P.J. Keller, Mytilus byssal threads as an environmental marker for metals. Aquat. Toxicol. 1, 291–300 (1981)CrossRefGoogle Scholar
  35. 35.
    P. Szefer, K. Ikuta, S. Kushiyama, K. Szefer, K. Frelek, J. Geldon, Distribution and association of trace metals in soft tissue and byssus of Mytilus edulis from the east coast of Kyushu Island, Japan. Arch. Environ. Contam. Toxicol. 32, 184–190 (1997)CrossRefGoogle Scholar
  36. 36.
    S. Martin, J. Kesselman, D. Park, N. Lewis, M. Hoffmann, Surface studies of 4-chlorocatechol adsorbed on titanium dioxide. Environ. Sci. Technol. 30, 2535–2542 (1996)CrossRefGoogle Scholar
  37. 37.
    M.J. Sever, J.J. Wilker. Visible absorption spectra of metal-catecholate and metal-tironate complexes. Dalton. Trans. 7, 1061–1072 (2004)CrossRefGoogle Scholar
  38. 38.
    S.W. Taylor, D.B. Chase, M.H. Emptage, M.J. Nelson, J.H. Waite, Ferric Ion complexes of a DOPA-containing adhesive protein from mytilus edulis. Inorg. Chem. 35, 7572–7577 (1996)CrossRefGoogle Scholar
  39. 39.
    S.W. Taylor, G.W. Luther III, J.H. Waite, Polarographic and spectrophotometric investigation of iron(III) complexation to 3,4-Dihydroxyphenylalanine-containing peptides and proteins from mytilus edulis. Inorg. Chem. 33, 5819–5824 (1994)CrossRefGoogle Scholar
  40. 40.
    M.J. Sever, J.J. Wilker, Absorption spectroscopy and binding constants for first-row transition metal complexes of a DOPA-containing peptide. Dalton Trans. 14, 813–22 (2006)CrossRefGoogle Scholar
  41. 41.
    M.J. Harrington, A. Masic, N. Holten-Andersen, J.H. Waite, P. Fratzl, Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science. 328, 216–220 (2010)CrossRefGoogle Scholar
  42. 42.
    M.J. Harrington, H.S. Gupta, P. Fratzl, J.H. Waite, Collagen insulated from tensile damage by domains that unfold reversibly: In situ X-ray investigation of mechanical yield and damage repair in the mussel byssus. J. Struct. Biol. 167, 47–54 (2009)CrossRefGoogle Scholar
  43. 43.
    N. Holten-Andersen, M.J. Harrington, H. Birkedal, B.P. Lee, P.B. Messersmith, K.Y.C. Lee, J.H. Waite, pH-induced mussel metal-ligand crosslinks yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl. Acad. Sci. 15, 2651–2655 (2011) (PMCID: PMC3041094)CrossRefGoogle Scholar
  44. 44.
    R. Kummert, W. Stumm, The surface complexation of organic acids on hydrous g-alumina. J. Colloid Interface Sci. 75, 373–385 (1980)CrossRefGoogle Scholar
  45. 45.
    M.P. Soriaga, A.T. Hubbard, Determination of the orientation of aromatic molecules adsorbed on platinum electrodes. The effect of solute concentration. JACS. 104, 3937–3945 (1982)CrossRefGoogle Scholar
  46. 46.
    D.C. Hansen, S.C. Dexter, J.H. Waite, The inhibition of corrosion of S30403 stainless steel by a naturally occurring catecholic polymer. Corros. Sci. 37, 1423–1441 (1995)CrossRefGoogle Scholar
  47. 47.
    B.P. Lee, C.-Y. Chao, F.N. Nunalee, E. Motan, K.R. Shull, P.B. Messersmith, Rapid photocurable of amphiphilic block copolymers hydrogels with high DOPA contents. Maclomolecules. 39, 1740–1748 (2006)CrossRefGoogle Scholar
  48. 48.
    H. Lee, N.F. Scherer, P.B. Messersmith, Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. U S A. 103, 12999–13003 (2006)CrossRefGoogle Scholar
  49. 49.
    S.A. Mian, X. Gao, S. Nagase, J. Jang, Adsorption of catechol on a wet silica surface: density functional theory study. Theor. Chem. Acc. 130, 333–339 (2011)CrossRefGoogle Scholar
  50. 50.
    S.A. Mian, L.C. Saha, J. Jang, L. Wang, X. Gao, S. Nagase, Density functional theory study of catechol adhesion on silica surfaces. J. Phys. Chem. C. 114, 20793–20800 (2010)CrossRefGoogle Scholar
  51. 51.
    M. Vega-Arroyo, P.R. LeBreton, T. Rajh, P. Zapol, L.A. Curtiss, Density functional study of the TiO2–dopamine complex. Chem. Phys. Lett. 406, 306–311 (2005)CrossRefGoogle Scholar
  52. 52.
    J.L. Dalsin, B.-H. Hu, B.P. Lee, P.B. Messersmith, Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. JACS 125, 4253–4258 (2003)CrossRefGoogle Scholar
  53. 53.
    J.L. Dalsin, L. Lin, P.B. Messersmith, Antifouling performance of poly(ethylene glycol) anchored onto surfaces by mussel adhesive protein mimetic peptides. Polym. Mater. Sci. Eng. 90, 247–248 (2004)Google Scholar
  54. 54.
    J.L. Dalsin, L. Lin, S. Tosatti, J. Voeroes, M. Textor, P.B. Messersmith, Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Langmuir. 21, 640–646 (2005)CrossRefGoogle Scholar
  55. 55.
    M.P. Deacon, S.S. Davis, J.H. Waite, S.E. Harding, Structure and mucoadhesion of mussel glue protein in dilute solution. Biochemical. 37, 14108–14112 (1998)CrossRefGoogle Scholar
  56. 56.
    K. Huang, B.P. Lee, D. Ingram, P.B. Messersmith, Synthesis and characterization of self-assembling block copolymers containing Bioadhesive end groups. Biomacromology. 3, 397–406 (2002)CrossRefGoogle Scholar
  57. 57.
    J. Schnurrer, C.-M. Lehr, Mucoadhesive properties of the mussel adhesive protein. Int. J. Pharm. 141, 251–256 (1996)CrossRefGoogle Scholar
  58. 58.
    W.M. Chirdon, W.J. O'Brien, R.E. Robertson, Adsorption of catechol and comparative solutes on hydroxyapatite. J. Biomed. Mat. Res. B. 66B, 532–538 (2003)CrossRefGoogle Scholar
  59. 59.
    A.M. Baty, P.K. Leavitt, C.A. Siedlecki, B.J. Tyler, P.A. Suci, R.E. Marchant, G.G. Geesey, Adsorption of adhesive proteins from the marine mussel, mytilus edulis, on polymer films in the hydrated state using angle dependent X-ray photoelectron spectroscopy and atomic force microscopy. Langmuir. 13, 5702–5710 (1997)CrossRefGoogle Scholar
  60. 60.
    B.R. Baker, A.N. Laiwalla, J.-Y. Yoon, J. Canavate, R.L. Garrell, Adhesion and cohesion of mussel adhesive protein on glass and gold through protein removal studies. Polym. Mater. Sci. Eng. 85, 115–116 (2001)Google Scholar
  61. 61.
    L.M. McDowell, L.A. Burzio, J.H. Waite, J. Schaefer, Rotational echo double resonance detection of cross-links formed in mussel byssus under high-flow stress. J. Biol. Chem. 274, 20293–20295 (1999)CrossRefGoogle Scholar
  62. 62.
    B.P. Lee, J.L. Dalsin, P.B. Messersmith, Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels. Biomacromology. 3, 1038–1047 (2002)CrossRefGoogle Scholar
  63. 63.
    J.H. Waite, The phylogeny and chemical diversity of quinone-tanned glues and varnishes. Comp. Biochem. Physiol. B. 97, 19–29 (1990)Google Scholar
  64. 64.
    M. Sugumaran, H. Dali, V. Semensi, Chemical- and cuticular phenoloxidase-mediated synthesis of cysteinyl-catechol adducts. Arch. Insect. Biochem. Physiol. 11, 127–137 (1989)CrossRefGoogle Scholar
  65. 65.
    H. Lee, N.F. Scherer, P.B. Messersmith, Single molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. U S A 103, 12999–13003 (2006)CrossRefGoogle Scholar
  66. 66.
    H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science. 318, 426–430 (2007)CrossRefGoogle Scholar
  67. 67.
    B.P. Lee, J.L. Dalsin, P.B. Messersmith. Biomimetic adhesive polymers based on mussel adhesive proteins. Biological Adhesives (Springer, Berlin, 2006), pp. 257–278CrossRefGoogle Scholar
  68. 68.
    J.M. Harris, J.M. Dust, R.A. McGill, P.A. Harris, M.J. Edgell, R.M. Sedaghat-Herati, L.J. Karr, D.L. Donnelly. New polyethylene glycols for biomedical applications. Water-Soluble Polymer. ACS, DC Washington 418–29 (1991)Google Scholar
  69. 69.
    S.A. Burke, M. Ritter-Jones, B.P. Lee, P.B. Messersmith, Thermal gelation and tissue adhesion of biomimetic hydrogels. Biomed. Mater. 2, 203–210 (2007)CrossRefGoogle Scholar
  70. 70.
    P.B. Messersmith, B.P. Lee, J.L. Dalsin, S.A. Burke, inventors; DOPA-Functionized, Branched, Poly(Aklylene Oxide) Adhesives patent US Patent Application 20080247984 2008Google Scholar
  71. 71.
    J.L. Dalsin, B.P. Lee, L. Vollenweider, S. Silvary, J.L. Murphy, F. Xu, A. Spitz, A. Lyman, inventors; Multi-armed Catechol Compound Blends. US patent 8,119,742, 2012Google Scholar
  72. 72.
    J.H. Ryu, Y. Lee, W.H. Kong, T.G. Kim, T.G. Park, H. Lee, Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromology. 12, 2653–2659 (2011)CrossRefGoogle Scholar
  73. 73.
    Y. Lee, H.J. Chung, S. Yeo, C.-H. Ahn, H. Lee, P.B. Messersmith, T.G. Park, Thermo-sensitive, injectable, and tissue adhesive sol-gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft. Matter. 6, 977–983 (2010)CrossRefGoogle Scholar
  74. 74.
    C.J. Kastrup, M. Nahrendorf, J.L. Figueiredo, H. Lee, S. Kambhampati, T. Lee, S.W. Cho, R. Gorbatov, Y. Iwamoto, T.T. Dang, P. Dutta, J.H. Yeon, H. Cheng, C.D. Pritchard, A.J. Vegas, C.D. Siegel, S. MacDougall, M. Okonkwo, A. Thai, J.R. Stone, A.J. Coury, R. Weissleder, R. Langer, D.G. Anderson, Painting blood vessels and atherosclerotic plaques with an adhesive drug depot. Proc. Natl. Acad. Sci. U S A. 109, 21444–21449 (2012)CrossRefGoogle Scholar
  75. 75.
    B.P. Lee, inventorB. Compounds, S.M. Therefor, US patent 7,622,533. 2009Google Scholar
  76. 76.
    B.P. Lee, inventorB. Compounds, S.M. Therefor, US patent 8,030,413. 2011Google Scholar
  77. 77.
    C.E. Brubaker, P.B. Messersmith, Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules. 12, 4326–4334 (2011)CrossRefGoogle Scholar
  78. 78.
    F. Ganji, S. Vasheghani-Farahani, E. Vasheghani-Farahani, Theoretical description of hydrogel swelling: a review. Iran. Polym. J. 19, 375–398 (2010)Google Scholar
  79. 79.
    D.G. Barrett, G.G. Bushnell, PB Messersmith, Mechanically robust, negative-swelling, mussel-inspired tissue adhesives. Adv. Healthc. Mater. 2, 745–755 (2013)CrossRefGoogle Scholar
  80. 80.
    K. Haraguchi, Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym. J. 43, 223–241 (2011)CrossRefGoogle Scholar
  81. 81.
    S. Sarkar, E. Guibal, F. Quignard, A. SenGupta, Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J. Nanopart. Res. 14, 1–24 (2012)Google Scholar
  82. 82.
    A.K. Gaharwar, S.A. Dammu, J.M. Canter, C.J. Wu, G. Schmidt, Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromology. 12, 1641–1650 (2011)CrossRefGoogle Scholar
  83. 83.
    K. Haraguchi, R. Farnworth, A. Ohbayashi, T. Takehisa, Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N, N-dimethylacrylamide) and clay. Macromology. 36, 5732–5741 (2003)CrossRefGoogle Scholar
  84. 84.
    T. Wang, D. Liu, C. Lian, S. Zheng, X. Liu, Z. Tong, Large deformation behavior and effective network chain density of swollen poly(N-isopropylacrylamide)-Laponite nanocomposite hydrogels. Soft. Matter. 8, 774–783 (2012)CrossRefGoogle Scholar
  85. 85.
    S. Skelton, M. Bostwick, K. O'Connor, S. Konst, S. Casey, B.P. Lee, Biomimetic adhesive containing nanocomposite hydrogel with enhanced materials properties. Soft. Matter. 9, 3825–3833 (2013)CrossRefGoogle Scholar
  86. 86.
    Y. Liu, H. Zhan, S. Skelton, B.P. Lee, Marine adhesive containing nanocomposite hydrogel with enhanced materials and bioadhesive properties. MRS Proceedings. 2013;1569:mrss13-1569-LL05–09.Google Scholar
  87. 87.
    L. Ansaloni, F. Catena, S. Gagliardi, F. Gazzotti, L. D'Alessandro, A.D. Pinna, Hernia repair with porcine small-intestinal submucosa. Hernia. 11, 321–326 (2007)CrossRefGoogle Scholar
  88. 88.
    F. Catena, L. Ansaloni, F. Gazzotti, S. Gagliardi, S. Di Saverio, L. D'Alessandro, A.D. Pinna, Use of porcine dermal collagen graft (permacol) for hernia repair in contaminated fields. Hernia. 11, 57–60 (2007)CrossRefGoogle Scholar
  89. 89.
    M.E.J. Franklin, J.J. Gonzalez Jr., J.L. Glass, Use of porcine small intestinal submucosa as a prosthetic device for laparoscopic repair of hernias in contaminated fields: 2-year follow-up. Hernia. 8, 186–189 (2004)Google Scholar
  90. 90.
    D.K. Lee, Achilles tendon repair with acellular tissue graft augmentation in neglected ruptures. J. Foot. Ankle. Surg. 46, 451–455 (2007)CrossRefGoogle Scholar
  91. 91.
    J.L. Bond, R.M. Dopirak, J. Higgins, J. Burns, S.J. Snyder, Arthroscopic replacement of massive, irreparable rotator cuff tears using a graftjacket allograft: technique and preliminary results. Arthroscopy. 24, 403–409 (2008)CrossRefGoogle Scholar
  92. 92.
    J.A. Santibáñez-Salgado, J.R. Olmos-Zúñiga, M. Pérez-López, C. Aboitiz-Rivera, M. Gaxiola-Gaxiola, R. Jasso-Victoria, A. Sotres-Vega, M. Baltazares-Lipp, J.V.-C. Pérez-Covarrubias D, Lyophilized glutaraldehyde-preserved bovine pericardium for experimental atrial septal defect closure. Eur. Cell. Mater. 19, 158–165 (2010)Google Scholar
  93. 93.
    P.K. Narotam, K. Reddy, D. Fewer, F. Qiao, N. Nathoo, Collagen matrix duraplasty for cranial and spinal surgery: a clinical and imaging study. J. Neurosurg. 106, 45–51 (2007)CrossRefGoogle Scholar
  94. 94.
    T.P. Rauth, B.K. Poulose, L.B. Nanney, M.D. Holzman, A comparative analysis of expanded Polytetrafluoroethylene and small intestinal submucosa—implications for patch repair in ventral herniorrhaphy. J. Surg. Res. 143, 43–49 (2007)CrossRefGoogle Scholar
  95. 95.
    J.C.J. Lantis, E.K. Gallivan, R. Hekier, R. Connolly, S.D. Schwaitzberg, A comparison of collagen and PTFE patch repair in a rabbit model of congenital diaphragmatic hernia. J. Invest. Surg. 13, 319–325 (2000)CrossRefGoogle Scholar
  96. 96.
    M.L. Konstantinovic, P. Lagae, F. Zheng, E.K. Verbeken, D. De Ridder, J.A. Deprest, Comparison of host response to polypropylene and non-cross-linked porcine small intestine serosal-derived collagen implants in a rat model. J. Obstet. Gynecol. 112, 1554–1560 BJOG: an International (2005)Google Scholar
  97. 97.
    W.B. Gaertner, M.E. Bonsack, J.P. Delaney, Experimental evaluation of four biologic prostheses for ventral hernia repair. J. Gastrointest Surg. 11, 1275–1285 (2007)CrossRefGoogle Scholar
  98. 98.
    B. Hohendorff, W. Siepen, L. Spiering, L. Staub, T. Schmuck, A. Boss, Long-term results after operatively treated Achilles tendon rupture: fibrin glue versus suture. J. Foot Ankle Surg. 47, 392–399 (2008)CrossRefGoogle Scholar
  99. 99.
    B. Hohendorff, W. Siepen, L. Staub, Treatment of acute Achilles tendon rupture: fibrin glue versus fibrin glue augmented with plantaris longus tendon. J. Foot Ankle Surg. 48, 439–446 (2009)CrossRefGoogle Scholar
  100. 100.
    J.L. Murphy, L. Vollenweider, F. Xu, B.P. Lee. Adhesive performance of biomimetic adhesive-coated biologic scaffolds. Biomacromol.11, 2976–2984 (2010) PMCID: PMC3027843CrossRefGoogle Scholar
  101. 101.
    B.P. Lee, J.L. Dalsin, L. Vollenweider, J.L. Murphy, F. Xu, J. Virosco, W. Lew, J. White, inventors; Bioadhesive constructs. US patent 8,383,092. 2013Google Scholar
  102. 102.
    R. Devlieger, L.K. Millar, G. Bryant-Greenwood, L. Lewi, J. Deprest, Fetal membrane healing after spontaneous and iatrogenic membrane rupture: a review of current evidence. Am. J. Obstet. Gynecol. 195, 1512–1520 (2006)CrossRefGoogle Scholar
  103. 103.
    G. Bilic, C. Brubaker, P.B. Messersmith, A.S. Mallik, T.M. Quinn, C. Haller, E. Done, L. Gucciardo, S.M. Zeisberger, R. Zimmermann, J. Deprest, A.H. Zisch, Injectable candidate sealants for fetal membrane repair: bonding and toxicity in vitro. Am. J. Obstet. Gynecol.202(85), e1-9 (2010) PMCID: PMC2837921Google Scholar
  104. 104.
    C.M. Haller, W. Buerzle, A. Kivelio, M. Perrini, C.E. Brubaker, R.J. Gubeli, A.S. Mallik, W. Weber, P.B. Messersmith, E. Mazza, N. Ochsenbein-Koelble, R. Zimmermann, M. Ehrbar, Mussel-mimetic tissue adhesive for fetal membrane repair: an ex vivo evaluation. Acta. Biomater. 8, 4365–4370 (2012)CrossRefGoogle Scholar
  105. 105.
    M. Mehdizadeh, H. Weng, D. Gyawali, L. Tang, J. Yang, Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials. 33, 7972–7983 (2012) PMCID: 3432175CrossRefGoogle Scholar
  106. 106.
    The facts about diabetes: a leading cause of death in the U.S. [database on the Internet]. National Diabetes Education Program. 2011. Accessed July 2013.
  107. 107.
    M. Peyrot, A.H. Barnett, L.F. Meneghini, P.M. Schumm-Draeger, Insulin adherence behaviours and barriers in the multinational global attitudes of patients and physicians in insulin therapy study. Diabet. Med. 29, 682–689 (2012)CrossRefGoogle Scholar
  108. 108.
    A.M.J. Shapiro, J.R.T. Lakey, E.A. Ryan, G.S. Korbutt, E. Toth, G.L. Warnock, N.M. Kneteman, R.V. Rajotte, Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000)CrossRefGoogle Scholar
  109. 109.
    D.J. van der Windt, R. Bottino, A. Casu, N. Campanile, D.K.C. Cooper, Rapid loss of intraportally transplanted islets: an overview of pathophysiology and preventive strategies. Xenotransplantation. 14, 288–297 (2007)CrossRefGoogle Scholar
  110. 110.
    L. Moberg, O. Korsgren, B. Nilsson, Neutrophilic granulocytes are the predominant cell type infiltrating pancreatic islets in contact with ABO-compatible blood. Clin. Exp. Immunol. 142, 125–131 (2005)CrossRefGoogle Scholar
  111. 111.
    W. Bennet, C.G. Groth, R. Larsson, B. Nilsson, O. Korsgren, Isolated human islets trigger an instant blood mediated inflammatory reaction: Implications for intraportal islet transplantation as a treatment for patients with type 1 diabetes. Ups. J. Med. Sci. 105, 125–133 (2000)Google Scholar
  112. 112.
    C.E. Brubaker, H. Kissler, L.-J. Wang, D.B. Kaufman, P.B. Messersmith, Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials. 31, 420–427 (2010) PMCID: PMC2783676CrossRefGoogle Scholar
  113. 113.
    E. Simone, B.-S. Ding, V. Muzykantov, Targeted delivery of therapeutics to endothelium. Cell. Tissue. Res. 335, 283–300 (2009)CrossRefGoogle Scholar
  114. 114.
    J. Leppilahti, S. Orava, Total Achilles Tendon Rupture: A Review. Sports. Med. 25, 79–100 (1998)CrossRefGoogle Scholar
  115. 115.
    E.J. Strauss, C. Ishak, L. Jazrawi, O. Sherman, J. Rosen, Operative treatment of acute achilles tendon ruptures: an institutional review of clinical outcomes. Injury, Int. J. Care Inj. 38, 832–838 (2007)CrossRefGoogle Scholar
  116. 116.
    D.W. White, J.C. Wenke, D.S. Mosely, S.B. Mountcastle, C.J. Basamania, Incidence of major tendon ruptures and anterior cruciate ligament tears in US army soldiers. Am. J. Sports Med. 35, 1308–1314 (2007)CrossRefGoogle Scholar
  117. 117.
    N. Maffulli, Rupture of the achilles tendon. J. Bone Joint Surg. 81-A, 1019–1036 (1999)Google Scholar
  118. 118.
    S. Houshian, T. Tscherning, P. Riegels-Nielsen, The epidemiology of Achilles tendon rupture in a Danish county. Injury. 29, 651–654 (1998)CrossRefGoogle Scholar
  119. 119.
    A. Pajala, J. Kangas, P. Ohtonen, J. Leppilahti, Rerupture and deep infection following treatment of total achilles tendon rupture. J. Bone Joint Surg. 84-A, 2016–2021 (2002)Google Scholar
  120. 120.
    L. Nistor, Surgical and non-surgical treatment of achilles tendon rupture. J. Bone Joint Surg. 63-A, 394–399 (1981)Google Scholar
  121. 121.
    E. Winter, K. Weise, S. Weller, T. Ambacher, Surgical repair of achilles tendon rupture: comparison of surgical with conservative treatment. Arch. Orthop. Trauma Surg. 117, 364–367 (1998)CrossRefGoogle Scholar
  122. 122.
    F.J. Kummer, K. Iesaka, The role of graft materials in suture augmentation for tendon repairs and reattachment. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2005;74B:789–91.CrossRefGoogle Scholar
  123. 123.
    M. Brodie, L. Vollenweider, J.L. Murphy, F. Xu, A. Lyman, W.D. Lew, B.P. Lee, Biomechanical properties of achilles tendon repair augmented with bioadhesive-coated scaffold. Biomed. Mater. 6, 015014 (2011) PMCID: PMC3046464CrossRefGoogle Scholar
  124. 124.
    R.H. Gelberman, M.I. Boyer, M.D. Brodt, S.C. Winters, M.J. Silva, The effect of gap formation at the repair site on the strength and excursion of intrasynovial flexor tendons: an experimental study on the early stages of tendon-healing in dogs. J. Bone Joint Surg. 81 A, 975–982 (1999)Google Scholar
  125. 125.
    M.I. Boyer, R.H. Gelberman, M.E. Burns, H. Dinopoulos, R. Hofem, M.J. Silva, Intrasynovial flexor tendon repair an experimental study comparing low and high levels of in vivo force during rehabilitation in canines. J. Bone Joint Surg. 83, 891–899 (2001)Google Scholar
  126. 126.
    N.D. Braulta, C. Gaoa, H. Xuea, M. Piliarik, J. Homolab, S. Jianga, Q. Yua, Ultra-low fouling and functionalizable zwitterionic coatings grafted onto SiO2 via a biomimetic adhesive group for sensing and detection in complex media. Biosens. Bioelectron. 25, 2276–2282 (2010)CrossRefGoogle Scholar
  127. 127.
    A.R. Statz, R.J. Meagher, A.E. Barron, P.B. Messersmith, New peptidomimetic polymers for antifouling surfaces. JACS 127, 7972–7973 (2005)CrossRefGoogle Scholar
  128. 128.
    R. Ko, P.A. Cadieux, J.L. Dalsin, B.P. Lee, C.N. Elwood, H. Razvi, Novel uropathogen-resistant coatings inspired by marine mussels. J. Endourol. 22, 1153–1160 (2008)CrossRefGoogle Scholar
  129. 129.
    A. Pechey, C.N. Elwood, G.R. Wignall, J.L. Dalsin, B.P. Lee, M. Vanjecek, I. Welch, R. Ko, H. Razvi, P.A. Cadieux, Anti-adhesive coating and clearance of device associated uropathogenic escherichia coli cystitis. J. Urol. 182, (2009) 1628–1636 PMCID: PMC2807180CrossRefGoogle Scholar
  130. 130.
    T.S. Sileika, H.-D. Kim, P. Maniak, P.B. Messersmith, Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components. ACS Appl. Mater. Interfaces. 3, 4602–4610 (2011)CrossRefGoogle Scholar
  131. 131.
    J. Cui, Y. Wang, A. Postma, J. Hao, L. Hosta-Rigau, F. Caruso, Monodisperse polymer capsules: tailoring size, shell thickness, and hydrophobic cargo loading via emulsion templating. Adv. funct. mater. 20, 1625–1631 (2010)CrossRefGoogle Scholar
  132. 132.
    J. Su, F. Chen, V.L. Cryns, P.B. Messersmith, Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. JACS. 133, 11850–11853 (2011)CrossRefGoogle Scholar
  133. 133.
    H.J. Lee, A.N. Koo, S.W. Lee, M.H. Lee, S.C. Lee, Catechol-functionalized adhesive polymer nanoparticles for controlled local release of bone morphogenetic protein-2 from titanium surface. J. Control. Release. 170, 198–208 (2013)CrossRefGoogle Scholar
  134. 134.
    R. Gunawan, J. King, B.P. Lee, P.B. Messersmith, W. Miller, Surface presentation of bioactive ligands in a non-adhesive background using DOPA-Tethered biotinylated poly(ethylene glycol). Langmuir. 23, 10635–10643 (2007)CrossRefGoogle Scholar
  135. 135.
    S.H. Ku, C.B. Park, Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials. 31, 9431–9437 (2010)CrossRefGoogle Scholar
  136. 136.
    L. He, D.E. Fullenkamp, J.G. Rivera, P.B. Messersmith, pH responsive self-healing hydrogels formed by boronate–catechol complexation. Chem. Commun. 47, 7497–7499 (2011)CrossRefGoogle Scholar
  137. 137.
    P. Podsiadlo, Z. Liu, D. Paterson, P.B. Messersmith, N.A. Kotov, Fusion of seashell nacre and marine bioadhesive analogs: high strength nanocomposite by LBL of clay and DOPA-polymer. Adv. Mat. 19, 949–955 (2007)CrossRefGoogle Scholar
  138. 138.
    M. Lee, J. Rho, D.-E. Lee, S. Hong, S.-J. Choi, P.B. Messersmith, H. Lee, Water detoxification by a substrate-bound catecholamine adsorbent. ChemPlusChem. 77, 987–990 (2012)CrossRefGoogle Scholar
  139. 139.
    X. Jia, Z.Y. Ma, G.X. Zhang, J.M. Hu, Z.Y. Liu, H.Y. Wang, F. Zhou, Polydopamine film coated controlled-release multielement compound fertilizer based on mussel-inspired chemistry. J. Agric. Food Chem. 61, 2919–2924 (2013)CrossRefGoogle Scholar
  140. 140.
    X.-D. Pan, Z. Qina, Y.-Y. Yana, P. Sadhukhana, Elastomers with chain-end mussel-mimetic modification for nanocomposites: strong modifications to reinforcement and viscoelastic properties. Polymer. 51, 3453–3461 (2010)CrossRefGoogle Scholar
  141. 141.
    M.-H. Ryou, J. Kim, I. Lee, S. Kim, Y.K. Jeong, S. Hong, J.H. Ryu, T.-S. Kim, J.-K. Park, H. Lee, J.W. Choi, Lithium-Ion batteries: mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mat. 25, 1571–1576 (2013)CrossRefGoogle Scholar
  142. 142.
    G. Westwood, T.N. Horton, J.J. Wilker, Simplified polymer mimics of cross-linking adhesive proteins. Maclomolecules. 40, 3960–3964 (2007)CrossRefGoogle Scholar
  143. 143.
    D.E. Fullenkamp, L. He, D.G. Barrett, W.R. Burghardt, P.B. Messersmith, Mussel-inspired histidine-based transient network metal coordination hydrogels. Macromology. 46, 1167–1174 (2013)CrossRefGoogle Scholar
  144. 144.
    E. Bell, J. Gosline, Mechanical design of mussel byssus: material yield enhances attachment strength. J. Exp. Biol. 199, 1005–1017 (1996)Google Scholar
  145. 145.
    A. Tamarin, P. Lewis, J. Askey, The structure and formation of the byssus attachment plaque in mytilus. J. Morphol. 149, 199–221 (1976)CrossRefGoogle Scholar
  146. 146.
    S. Suresh, Graded materials for resistance to contact deformation and damage. Science. 292, 2447–2451 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringMichigan Technological UniversityHoughtonUSA

Personalised recommendations