Skip to main content

Bio-Inspired Engineering of 3D Carbon Nanostructures

  • Chapter
  • First Online:
Carbon Nanomaterials for Biomedical Applications

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 5))

Abstract

The continuous growth of global energy demand has spared concerns about energy security and environmental sustainability, so in this regard this chapter describes recent attractive focused progress on the synthesis of graphene-based three-dimensional (3D) nanostructures and their applications to energy-related systems. The fabrication protocols of different 3D nanostructures have been intensively surveyed including metal foam-based 3D graphene nanostructures, polymer-based 3D nanostructures, thermal chemical vapor deposition (CVD)-based 3D nanostructures, and 3D nanostructures decorated with metal nanoparticles. More specifically, the multistep formation processes are clearly described and possible growth mechanisms are proposed for the explanation of 3D self-assembled nanostructures with metal nanoparticles. The peculiar behaviors of 3D nanostructures with ultrahigh surface-to-volume ratio, highly conductive networks, mesoporous structures, electro-chemical activities, strong mechanical integrity, and efficient ion pathways are crucial for the energy-related applications such as supercapacitors, batteries, hydrogen storage, fuel cell, solar cell, bioinspired electro-chemical actuators, and catalysis. However, for practical and industrial applications, important issues on high yield, large-scale production, reproducibility, and performance durability should be more investigated in near future. Toward high-performance 3D nanostructures used in energy storage and conversion systems, the novel fabrication strategy for accurate controlled growth of 3D nanostructures will be an advance to promote the stagnant hydrogen industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O.A. Shenderova, V.V. Zhirnov, D.W. Brenner, Carbon Nanostructures. Crit Rev Solid State Mater Sci. 27, 227–356 (2002)

    Google Scholar 

  2. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker,S. Seal, Graphene based materials: Past, present and future. Prog Mater Sci. 56, 1178–1271 (2011)

    Google Scholar 

  3. M.D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Graphene-Based Ultracapacitors. Nano Lett. 8, 3498–3502 (2008)

    Google Scholar 

  4. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao,C. N. Lau, Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 8, 902–907 (2008)

    Google Scholar 

  5. C. Lee, X. Wei, J. W. Kysar,J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 321, 385–388 (2008)

    Google Scholar 

  6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva,A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666–669 (2004)

    Google Scholar 

  7. B. Sun, B. Wang, D. Su, L. Xiao, H. Ahn,G. Wang, Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance. Carbon 50, 727–733 (2012)

    Google Scholar 

  8. W. R. Davis, R. J. Slawson,G. R. Rigby, An Unusual Form of Carbon. Nature 171, 756–756 (1953)

    Google Scholar 

  9. R. Bacon, Growth, Structure, and Properties of Graphite Whiskers. J Appl Phys 31, 283–290 (1960)

    Google Scholar 

  10. R. T. K. Baker,R. J. Waite, Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene. J Catal. 37, 101–105 (1975)

    Google Scholar 

  11. R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates,R. J. Waite, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J Catal. 26, 51–62 (1972)

    Google Scholar 

  12. R. T. K. Baker, G. R. Gadbsy,S. Terry, Formation of carbon filaments from catalysed decompasition of hydrocarbons. Carbon 13, 245–246 (1975)

    Google Scholar 

  13. R. T. K. Baker, P. S. Harris, R. B. Thomas,R. J. Waite, Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J Catal. 30, 86–95 (1973)

    Google Scholar 

  14. A. Oberlin, M. Endo,T. Koyama, Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32, 335–349 (1976)

    Google Scholar 

  15. G. G. Tibbetts, Lengths of carbon fibers grown from iron catalyst particles in natural gas. J Cryst Growth 73, 431–438 (1985)

    Google Scholar 

  16. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Google Scholar 

  17. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  18. P.R. Wallace, The band theory of graphite. Phys. Rev. 71, 622–634 (1947)

    Article  Google Scholar 

  19. X. Lu, M. Yu, H. Huang, R.S. Ruoff, Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10, 269 (1999)

    Article  Google Scholar 

  20. R. Ruoff, Graphene: calling all chemists. Nat. Nano. 3, 10–11 (2008)

    Article  Google Scholar 

  21. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008)

    Article  Google Scholar 

  22. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B.L. dos Santos, J. Nilsson, F. Guinea, A.K. Geim, A.H.C. Neto, Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007)

    Article  Google Scholar 

  23. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446, 60–63 (2007)

    Article  Google Scholar 

  24. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  25. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nano. 3, 563–568 (2008)

    Article  Google Scholar 

  26. S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, A chemical route to graphene for device applications. Nano. Lett. 7, 3394–3398 (2007)

    Article  Google Scholar 

  27. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nano. 3, 101–105 (2008)

    Article  Google Scholar 

  28. J. Wu, W. Pisula, K. Müllen, Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007)

    Article  Google Scholar 

  29. C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004)

    Article  Google Scholar 

  30. W.A. de Heer, C. Berger, X. Wu, P.N. First, E.H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski, G. Martinez, Epitaxial graphene. Solid State Comm. 143, 92–100 (2007)

    Article  Google Scholar 

  31. M. Sveningsson, R.E. Morjan, O.A. Nerushev, Y. Sato, J. Bäckström, E.E.B. Campbell, F. Rohmund, Raman spectroscopy and field-emission properties of CVD-grown carbon-nanotube films. Appl. Phys. A 73, 409–418 (2001)

    Article  Google Scholar 

  32. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano. Lett. 9, 30–35 (2008)

    Article  Google Scholar 

  33. J. Hass, W.A.d. Heer, E.H. Conrad, The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 20, 323202 (2008)

    Article  Google Scholar 

  34. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.-M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011)

    Article  Google Scholar 

  35. X. Dong, X. Wang, L. Wang, H. Song, H. Zhang, W. Huang, P. Chen, 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS Appl. Mater. Interfaces 4, 3129–3133 (2012)

    Article  Google Scholar 

  36. X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M.B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, P. Chen, 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6, 3206–3213 (2012)

    Article  Google Scholar 

  37. X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Preparation of novel 3D graphene networks for supercapacitor applications. Small 7, 3163–3168 (2011)

    Article  Google Scholar 

  38. L. Estevez, A. Kelarakis, Q. Gong, E.H. Da’as, E.P. Giannelis, Multifunctional graphene/platinum/nafion hybrids via ice templating. J. Am. Chem. Soc. 133, 6122–6125 (2011)

    Article  Google Scholar 

  39. S.H. Lee, H.W. Kim, J.O. Hwang, W.J. Lee, J. Kwon, C.W. Bielawski, R.S. Ruoff, S.O. Kim, Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew. Chem. Int. Ed. 49, 10084–10088 (2010)

    Article  Google Scholar 

  40. S. Yin, Y. Zhang, J. Kong, C. Zou, C.M. Li, X. Lu, J. Ma, F.Y.C. Boey, X. Chen, Assembly of graphene sheets into hierarchical structures for high-performance energy storage. ACS Nano 5, 3831–3838 (2011)

    Article  Google Scholar 

  41. J.L. Vickery, A.J. Patil, S. Mann, Fabrication of graphene–polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 21, 2180–2184 (2009)

    Article  Google Scholar 

  42. M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher, T.F. Baumann, Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132, 14067–14069 (2010)

    Article  Google Scholar 

  43. X. Jiang, Y. Ma, J. Li, Q. Fan, W. Huang, Self-assembly of reduced graphene oxide into three-dimensional architecture by divalent ion linkage. J. Phys. Chem. C 114, 22462–22465 (2010)

    Article  Google Scholar 

  44. S.-Z. Zu, B.-H. Han, Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel. J. Phys. Chem. C 113, 13651–13657 (2009)

    Article  Google Scholar 

  45. H. Bai, K. Sheng, P. Zhang, C. Li, G. Shi, Graphene oxide/conducting polymer composite hydrogels. J. Mater. Chem. 21, 18653–18658 (2011)

    Article  Google Scholar 

  46. Z. Tang, S. Shen, J. Zhuang, X. Wang, Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew. Chem. Int. Ed. 49, 4603–4607 (2010)

    Article  Google Scholar 

  47. Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Müllen, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 134, 9082–9085 (2012)

    Article  Google Scholar 

  48. W. Chen, L. Yan, In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale, 3, 3132–3137 (2011)

    Article  Google Scholar 

  49. X. Zhang, Z. Sui, B. Xu, S. Yue, Y. Luo, W. Zhan, B. Liu, Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 21, 6494–6497 (2011)

    Article  Google Scholar 

  50. H.-P. Cong, X.-C. Ren, P. Wang, S.-H. Yu, Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6, 2693–2703 (2012)

    Article  Google Scholar 

  51. Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324–4330 (2010)

    Article  Google Scholar 

  52. H. Jiang, P.S. Lee, C. Li, 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 6, 41–53 (2013)

    Article  Google Scholar 

  53. W. Wang, S. Guo, M. Penchev, I. Ruiz, K.N. Bozhilov, D. Yan, M. Ozkan, C.S. Ozkan, Three dimensional few-layer graphene–carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy 2, 294–303 (2013)

    Article  Google Scholar 

  54. W. Chen, S. Li, C. Chen, L. Yan, Self-assembly and embedding of nanoparticles by in Situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv. Mater. 23, 5679–5683 (2011)

    Article  Google Scholar 

  55. S.T. Nguyen, H.T. Nguyen, A. Rinaldi, N.P.V. Nguyen, Z. Fan, H.M. Duong, Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications. Colloids Surf. A 414, 352–358 (2012)

    Article  Google Scholar 

  56. T. Maiyalagan, X. Dong, P. Chen, X. Wang, Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application. J. Mater. Chem. 22, 5286–5290 (2012)

    Article  Google Scholar 

  57. L. Zhang, G. Chen, M.N. Hedhili, H. Zhang, P. Wang, Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method. Nanoscale 4, 7038–7045 (2012)

    Article  Google Scholar 

  58. A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis, R.C. Haddon, Enhanced thermal conductivity in a hybrid graphite nanoplatelet—carbon nanotube filler for epoxy composites. Adv. Mater. 20, 4740–4744 (2008)

    Article  Google Scholar 

  59. C. Zhang, S. Huang, W.W. Tjiu, W. Fan, T. Liu, Facile preparation of water-dispersible graphene sheets stabilized by acid-treated multi-walled carbon nanotubes and their poly(vinyl alcohol) composites. J. Mater. Chem. 22, 2427–2434 (2012)

    Article  Google Scholar 

  60. R. Wang, J. Sun, L. Gao, C. Xu, J. Zhang, Fibrous nanocomposites of carbon nanotubes and graphene-oxide with synergetic mechanical and actuative performance. Chem. Commun. 47, 8650–8652 (2011)

    Article  Google Scholar 

  61. L. Xu, N. Wei, Y. Zheng, Z. Fan, H.-Q. Wang, J.-C. Zheng, Graphene-nanotube 3D networks: intriguing thermal and mechanical properties. J. Mater. Chem. 22, 1435–1444 (2012)

    Article  Google Scholar 

  62. C. Wu, X. Huang, G. Wang, L. Lv, G. Chen, G. Li, P. Jiang, Highly conductive nanocomposites with three-dimensional, compactly interconnected graphene networks via a self-assembly process. Adv. Funct. Mater. 23, 506–513 (2013)

    Article  Google Scholar 

  63. L.L. Zhang, Z. Xiong, X.S. Zhao, Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation. ACS Nano 4, 7030–7036 (2010)

    Article  Google Scholar 

  64. Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, F. Wei, A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 3723–3728 (2010)

    Article  Google Scholar 

  65. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2009)

    Article  Google Scholar 

  66. V. Jousseaume, J. Cuzzocrea, N. Bernier, V.T. Renard, Few graphene layers/carbon nanotube composites grown at complementary-metal-oxide-semiconductor compatible temperature. Appl. Phys. Lett. 98, 123103–123103 (2011)

    Article  Google Scholar 

  67. M. Zhou, T. Lin, F. Huang, Y. Zhong, Z. Wang, Y. Tang, H. Bi, D. Wan, J. Lin, Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Adv. Functi. Mater. 23, 2263–2269 (2013)

    Article  Google Scholar 

  68. S. Chen, P. Bao, G. Wang Synthesis of Fe2O3–CNT–graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage. Nano Energy 2, 425–434 (2013)

    Article  Google Scholar 

  69. J.-S. Cheng, J. Du, W. Zhu, Facile synthesis of three-dimensional chitosan–graphene mesostructures for reactive black 5 removal. Carbohydr. Polym. 88, 61–67 (2012)

    Article  Google Scholar 

  70. Y. Pan, H. Bao, L. Li, Noncovalently functionalized multiwalled carbon nanotubes by chitosan-grafted reduced graphene oxide and their synergistic reinforcing effects in chitosan films. ACS Appl. Mater. Interfaces 3, 4819–4830 (2011)

    Article  Google Scholar 

  71. X. Dong, G. Xing, M.B. Chan-Park, W. Shi, N. Xiao, J. Wang, Q. Yan, T.C. Sum, W. Huang, P. Chen, The formation of a carbon nanotube–graphene oxide core–shell structure and its possible applications. Carbon 49, 5071–5078 (2011)

    Article  Google Scholar 

  72. Y.-K. Kim, D.-H. Min, Preparation of scrolled graphene oxides with multi-walled carbon nanotube templates. Carbon 48, 4283–4288 (2010)

    Article  Google Scholar 

  73. D. Yu, L. Dai, Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1, 467–470 (2009)

    Article  Google Scholar 

  74. L. Qiu, X. Yang, X. Gou, W. Yang, Z.-F. Ma, G.G. Wallace, D. Li, Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. Chem. Eur. J. 16, 10653–10658 (2010)

    Article  Google Scholar 

  75. D. Cai, M. Song, C. Xu, Highly conductive carbon-nanotube/graphite-oxide hybrid films. Adv. Mater. 20, 1706–1709 (2008)

    Article  Google Scholar 

  76. D. Chen, W. Wei, R. Wang, J. Zhu, L. Guo, α-Fe2O3 nanoparticles anchored on graphene with 3D quasi-laminated architecture: in situ wet chemistry synthesis and enhanced electrochemical performance for lithium ion batteries. New J. Chem. 36, 1589–1595 (2012)

    Article  Google Scholar 

  77. J.-Z. Wang, C. Zhong, D. Wexler, N.H. Idris, Z.-X. Wang, L.-Q. Chen, H.-K. Liu, Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Chem. Eur. J. 17, 661–667 (2011)

    Article  Google Scholar 

  78. S. Bai, X. Shen, Graphene-inorganic nanocomposites. RSC Adv. 2, 64–98 (2012)

    Article  Google Scholar 

  79. H.-J. Choi, S.-M. Jung, J.-M. Seo, D.W. Chang, L. Dai, J.-B. Baek, Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1, 534–551 (2012)

    Article  Google Scholar 

  80. R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Nanostructured ternary electrodes for energy-storage applications. Adv. Energy Mater. 2, 381–389 (2012)

    Article  Google Scholar 

  81. Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828–4850 (2011)

    Article  Google Scholar 

  82. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)

    Article  Google Scholar 

  83. J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B.G. Sumpter, A. Srivastava, M. Conway, A.L. Mohana Reddy, J. Yu, R. Vajtai, P.M. Ajayan, Ultrathin planar graphene supercapacitors. Nano Lett. 11, 1423–1427 (2011)

    Article  Google Scholar 

  84. Y. Huang, J. Liang, Y. Chen, An overview of the applications of graphene-based materials in supercapacitors. Small 8, 1805–1834 (2012)

    Article  Google Scholar 

  85. W. Shi, J. Zhu, D.H. Sim, Y.Y. Tay, Z. Lu, X. Zhang, Y. Sharma, M. Srinivasan, H. Zhang, H.H. Hng, Q. Yan, Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Chem. 21, 3422–3427 (2011)

    Article  Google Scholar 

  86. B. Li, H. Cao, J. Shao, M. Qu, J.H. Warner, Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. J. Mater. Chem. 21, 5069–5075 (2011)

    Article  Google Scholar 

  87. W. Zhou, J. Liu, T. Chen, K.S. Tan, X. Jia, Z. Luo, C. Cong, H. Yang, C.M. Li, T. Yu, Fabrication of Co3O4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes. Phys. Chem. Chem. Phys. 13, 14462–14465 (2011)

    Article  Google Scholar 

  88. J. Yan, T. Wei, W. Qiao, B. Shao, Q. Zhao, L. Zhang, Z. Fan, Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim. Acta 55, 6973–6978 (2010)

    Article  Google Scholar 

  89. S. Chen, J. Zhu, X. Wang, One-step synthesis of graphene–cobalt hydroxide nanocomposites and their electrochemical properties. J. Phys. Chem. C 114, 11829–11834 (2010)

    Article  Google Scholar 

  90. X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu, X. Zhao, Graphene sheet/porous NiO hybrid film for supercapacitor applications. Chem. Eur. J. 17, 10898–10905 (2011)

    Article  Google Scholar 

  91. W. Lv, F. Sun, D.-M. Tang, H.-T. Fang, C. Liu, Q.-H. Yang, H.-M. Cheng, A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance. J. Mater. Chem. 21, 9014–9019 (2011)

    Article  Google Scholar 

  92. J.W. Lee, T. Ahn, D. Soundararajan, J.M. Ko, J.-D. Kim, Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior. Chem. Commun. 47, 6305–6307 (2011)

    Article  Google Scholar 

  93. H. Wang, H.S. Casalongue, Y. Liang, H. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132, 7472–7477 (2010)

    Article  Google Scholar 

  94. H.-W. Wang, Z.-A. Hu, Y.-Q. Chang, Y.-L. Chen, H.-Y. Wu, Z.-Y. Zhang, Y.-Y. Yang, Design and synthesis of NiCo2O4-reduced graphene oxide composites for high performance supercapacitors. J. Mater. Chem. 21, 10504–10511 (2011)

    Article  Google Scholar 

  95. T. Lu, Y. Zhang, H. Li, L. Pan, Y. Li, Z. Sun, Electrochemical behaviors of graphene–ZnO and graphene–SnO2 composite films for supercapacitors. Electrochim. Acta 55, 4170–4173 (2010)

    Article  Google Scholar 

  96. Y.-L. Chen, Z.-A. Hu, Y.-Q. Chang, H.-W. Wang, Z.-Y. Zhang, Y.-Y. Yang, H.-Y. Wu, Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J. Phys. Chem. C 115, 2563–2571 (2011)

    Article  Google Scholar 

  97. Y. Wang, C.X. Guo, J. Liu, T. Chen, H. Yang, C.M. Li, CeO2 nanoparticles/graphene nanocomposite-based high performance supercapacitor. Dalton Trans. 40, 6388–6391 (2011)

    Article  Google Scholar 

  98. B. Li, H. Cao, G. Yin, Y. Lu, J. Yin, Cu2O@reduced graphene oxide composite for removal of contaminants from water and supercapacitors. J. Mater. Chem. 21, 10645–10648 (2011)

    Article  Google Scholar 

  99. Z. Li, J. Wang, X. Liu, S. Liu, J. Ou, S. Yang, Electrostatic layer-by-layer self-assembly multilayer films based on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors. J. Mater. Chem. 21, 3397–3403 (2011)

    Article  Google Scholar 

  100. J. Zhang, J. Jiang, X.S. Zhao, Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J. Phys. Chem. C 115, 6448–6454 (2011)

    Article  Google Scholar 

  101. C. Zhu, S. Guo, Y. Fang, L. Han, E. Wang, S. Dong, One-step electrochemical approach to the synthesis of graphene/MnO2 nanowall hybrids. Nano Res. 4, 648–657 (2011)

    Article  Google Scholar 

  102. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.-C. Qin, Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49, 2917–2925 (2011)

    Article  Google Scholar 

  103. G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, Z. Bao, Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 11, 2905–2911 (2011)

    Article  Google Scholar 

  104. J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48, 3825–3833 (2010)

    Article  Google Scholar 

  105. B. Wang, J. Park, C. Wang, H. Ahn, G. Wang, Mn3O4 nanoparticles embedded into graphene nanosheets: preparation, characterization, and electrochemical properties for supercapacitors. Electrochim. Acta 55, 6812–6817 (2010)

    Article  Google Scholar 

  106. H.-W. Wang, Z.-A. Hu, Y.-Q. Chang, Y.-L. Chen, Z.-Q. Lei, Z.-Y. Zhang, Y.-Y. Yang, Facile solvothermal synthesis of a graphene nanosheet–bismuth oxide composite and its electrochemical characteristics. Electrochim. Acta 55, 8974–8980 (2010)

    Article  Google Scholar 

  107. F. Li, J. Song, H. Yang, S. Gan, Q. Zhang, D. Han, A. Ivaska, L. Niu, One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 20, 455602 (2009)

    Article  Google Scholar 

  108. Z.-S. Wu, D.-W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.-M. Cheng, Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 20, 3595–3602 (2010)

    Article  Google Scholar 

  109. G. Wang, X. Shen, J. Yao, J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47, 2049–2053 (2009)

    Article  Google Scholar 

  110. M. Liang, L. Zhi, Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem. 19, 5871–5878 (2009)

    Article  Google Scholar 

  111. S.-M. Paek, E. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9, 72–75 (2008)

    Article  Google Scholar 

  112. L. Ji, Z. Tan, T.R. Kuykendall, S. Aloni, S. Xun, E. Lin, V. Battaglia, Y. Zhang, Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells. Phys. Chem. Chem. Phys. 13, 7170–7177 (2011)

    Article  Google Scholar 

  113. P. Lian, X. Zhu, H. Xiang, Z. Li, W. Yang, H. Wang, Enhanced cycling performance of Fe3O4–graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim. Acta 56, 834–840 (2010)

    Article  Google Scholar 

  114. G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G.Q. Lu, H.-M. Cheng, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22, 5306–5313 (2010)

    Article  Google Scholar 

  115. M. Zhang, D. Lei, X. Yin, L. Chen, Q. Li, Y. Wang, T. Wang, Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. J. Mater. Chem. 20, 5538–5543 (2010)

    Article  Google Scholar 

  116. G. Wang, T. Liu, Y. Luo, Y. Zhao, Z. Ren, J. Bai, H. Wang, Preparation of Fe2O3/graphene composite and its electrochemical performance as an anode material for lithium ion batteries. J. Alloys Compd. 509, L216–L220 (2011)

    Article  Google Scholar 

  117. X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance Anode Material for Lithium Ion Batteries. ACS Nano 6, 183–191 (2011)

    Google Scholar 

  118. J. Zhu, T. Zhu, X. Zhou, Y. Zhang, X.W. Lou, X. Chen, H. Zhang, H.H. Hng, Q. Yan, Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3, 1084–1089 (2011)

    Article  Google Scholar 

  119. Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.-M. Cheng, Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4, 3187–3194 (2010)

    Article  Google Scholar 

  120. S.Q. Chen, Y. Wang, Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J. Mater. Chem. 20, 9735–9739 (2010)

    Article  Google Scholar 

  121. H. Kim, D.-H. Seo, S.-W. Kim, J. Kim, K. Kang, Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries. Carbon 49, 326–332 (2011)

    Article  Google Scholar 

  122. S. Yang, X. Feng, S. Ivanovici, K. Müllen, Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew. Chem. Int. Ed. 49, 8408–8411 (2010)

    Article  Google Scholar 

  123. J. Zhu, Y.K. Sharma, Z. Zeng, X. Zhang, M. Srinivasan, S. Mhaisalkar, H. Zhang, H.H. Hng, Q. Yan, Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-Ion battery electrodes. J. Phys. Chem. C 115, 8400–8406 (2011)

    Article  Google Scholar 

  124. Y.-S. He, D.-W. Bai, X. Yang, J. Chen, X.-Z. Liao, Z.-F. Ma, A Co(OH)2–graphene nanosheets composite as a high performance anode material for rechargeable lithium batteries. Electrochem. Commun. 12, 570–573 (2010)

    Article  Google Scholar 

  125. Y. Zou, Y. Wang, NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries. Nanoscale 3, 2615–2620 (2011)

    Article  Google Scholar 

  126. B. Li, H. Cao, J. Shao, H. Zheng, Y. Lu, J. Yin, M. Qu, Improved performances of α-Ni(OH)2@reduced-graphene-oxide in Ni-MH and Li-ion batteries. Chem Commun. 47, 3159–3161 (2011)

    Article  Google Scholar 

  127. X. Huang, X. Zhou, L. Zhou, K. Qian, Y. Wang, Z. Liu, C. Yu, A facile one-step solvothermal synthesis of SnO2/graphene nanocomposite and its application as an anode material for lithium-ion batteries. Chem. Phys. Chem. 12, 278–281 (2011)

    Google Scholar 

  128. X. Wang, X. Zhou, K. Yao, J. Zhang, Z. Liu, A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 49, 133–139 (2011)

    Article  Google Scholar 

  129. L.-S. Zhang, L.-Y. Jiang, H.-J. Yan, W.D. Wang, W. Wang, W.-G. Song, Y.-G. Guo, L.-J. Wan, Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. J. Mater. Chem. 20, 5462–5467 (2010)

    Article  Google Scholar 

  130. Z. Wang, H. Zhang, N. Li, Z. Shi, Z. Gu, G. Cao, Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries. Nano Res. 3, 748–756 (2010)

    Article  Google Scholar 

  131. J. Yao, X. Shen, B. Wang, H. Liu, G. Wang, In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem. Commun. 11, 1849–1852 (2009)

    Article  Google Scholar 

  132. S. Ding, D. Luan, F.Y.C. Boey, J.S. Chen, X.W. Lou, SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem. Commun. 47, 7155–7157 (2011)

    Article  Google Scholar 

  133. Y. Li, X. Lv, J. Lu, J. Li, Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J. Phys. Chem. C 114, 21770–21774 (2010)

    Article  Google Scholar 

  134. S. Ding, J.S. Chen, D. Luan, F.Y.C. Boey, S. Madhavi, X.W. Lou, Graphene-supported anatase TiO2 nanosheets for fast lithium storage. Chem. Commun. 47, 5780–5782 (2011)

    Article  Google Scholar 

  135. N. Li, G. Liu, C. Zhen, F. Li, L. Zhang, H.-M. Cheng, Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv. Funct. Mater. 21, 1717–1722 (2011)

    Article  Google Scholar 

  136. D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L.V. Saraf, J. Zhang, I.A. Aksay, J. Liu, Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3, 907–914 (2009)

    Article  Google Scholar 

  137. Y. Qiu, K. Yan, S. Yang, L. Jin, H. Deng, W. Li, Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into Anatase@Titanium oxynitride/titanium nitride–graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. ACS Nano 4, 6515–6526 (2010)

    Article  Google Scholar 

  138. J.S. Chen, Z. Wang, X.C. Dong, P. Chen, X.W. Lou, Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities. Nanoscale 3, 2158–2161 (2011)

    Article  Google Scholar 

  139. H. Wang, L.-F. Cui, Y. Yang, H. Sanchez Casalongue, J.T. Robinson, Y. Liang, Y. Cui, H. Dai, Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132, 13978–13980 (2010)

    Article  Google Scholar 

  140. Y.J. Mai, X.L. Wang, J.Y. Xiang, Y.Q. Qiao, D. Zhang, C.D. Gu, J.P. Tu, CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim. Acta 56, 2306–2311 (2011)

    Article  Google Scholar 

  141. B. Wang, X.-L. Wu, C.-Y. Shu, Y.-G. Guo, C.-R. Wang, Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. 20, 10661–10664 (2010)

    Article  Google Scholar 

  142. G. Wang, J. Bai, Y. Wang, Z. Ren, J. Bai, Prepartion and electrochemical performance of a cerium oxide–graphene nanocomposite as the anode material of a lithium ion battery. Scripta Mater. 65, 339–342 (2011)

    Article  Google Scholar 

  143. K. Chang, W. Chen, In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 47, 4252–4254 (2011)

    Article  Google Scholar 

  144. K. Chang, W. Chen, l-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5, 4720–4728 (2011)

    Article  Google Scholar 

  145. H. Xiang, B. Tian, P. Lian, Z. Li, H. Wang, Sol–gel synthesis and electrochemical performance of Li4Ti5O12/graphene composite anode for lithium-ion batteries. J. Alloys Compd. 509, 7205–7209 (2011)

    Article  Google Scholar 

  146. L. Shen, C. Yuan, H. Luo, X. Zhang, S. Yang, X. Lu, In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries. Nanoscale 3, 572–574 (2011)

    Article  Google Scholar 

  147. J.K. Lee, K.B. Smith, C.M. Hayner, H.H. Kung, Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Commun. 46, 2025–2027 (2010)

    Article  Google Scholar 

  148. J.-Z. Wang, C. Zhong, S.-L. Chou, H.-K. Liu, Flexible free-standing graphene-silicon composite film for lithium-ion batteries. Electrochem. Commun. 12, 1467–1470 (2010)

    Article  Google Scholar 

  149. S.-L. Chou, J.-Z. Wang, M. Choucair, H.-K. Liu, J.A. Stride, S.-X. Dou, Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 12, 303–306 (2010)

    Article  Google Scholar 

  150. S. Chen, P. Chen, M. Wu, D. Pan, Y. Wang, Graphene supported Sn–Sb@carbon core-shell particles as a superior anode for lithium ion batteries. Electrochem. Commun. 12, 1302–1306 (2010)

    Article  Google Scholar 

  151. G. Wang, B. Wang, X. Wang, J. Park, S. Dou, H. Ahn, K. Kim, Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem. 19, 8378–8384 (2009)

    Article  Google Scholar 

  152. L. Ji, Z. Tan, T. Kuykendall, E.J. An, Y. Fu, V. Battaglia, Y. Zhang, Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage. Energy Environ. Sci. 4, 3611–3616 (2011)

    Article  Google Scholar 

  153. F. Ji, Y.-L. Li, J.-M. Feng, D. Su, Y.-Y. Wen, Y. Feng, F. Hou, Electrochemical performance of graphene nanosheets and ceramic composites as anodes for lithium batteries. J. Mater. Chem. 19, 9063–9067 (2009)

    Article  Google Scholar 

  154. Z.-J. Fan, J. Yan, T. Wei, G.-Q. Ning, L.-J. Zhi, J.-C. Liu, D.-X. Cao, G.-L. Wang, F. Wei, Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: high-performance anode materials for lithium ion batteries. ACS Nano 5, 2787–2794 (2011)

    Article  Google Scholar 

  155. E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008)

    Article  Google Scholar 

  156. L. Schlapbach, A. Zuttel, Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001)

    Article  Google Scholar 

  157. C.-D. Wu, L.-M. Kuo, S.-J. Lin, T.-H. Fang, S.-F. Hsieh, Effects of temperature, size of water droplets, and surface roughness on nanowetting properties investigated using molecular dynamics simulation. Comput. Mater. Sci. 53, 25–30 (2012)

    Article  Google Scholar 

  158. C.-D. Wu, T.-H. Fang, J.-F. Lin, An investigation of the effects of polymethylmethacrylate orientation and antistiction layer on the nanoimprint process using molecular dynamics. Adv. Sci. Lett. 4, 36–43 (2011)

    Article  Google Scholar 

  159. S.-J. Lin, C.-D. Wu, T.-H. Fang, L.-M. Kuo, Effects of forging temperature and velocity on nano-forming process using molecular dynamics simulation. Comput. Mater. Sci. 50, 2918–2924 (2011)

    Article  Google Scholar 

  160. C.-D. Wu, T.-H. Fang, J.-F. Lin, Formation mechanism and mechanics of dip-pen nanolithography using molecular dynamics. Langmuir 26, 3237–3241 (2009)

    Article  Google Scholar 

  161. C.P. Herrero, R. Ramírez, Diffusion of hydrogen in graphite: a molecular dynamics simulation. J. Phys. D: Appl. Phys. 43, 255402 (2010)

    Article  Google Scholar 

  162. F. Darkrim Lamari, D. Levesque, Hydrogen adsorption on functionalized graphene. Carbon 49, 5196–5200 (2011)

    Article  Google Scholar 

  163. H. Du, J. Li, J. Zhang, G. Su, X. Li, Y. Zhao, Separation of hydrogen and nitrogen gases with porous graphene membrane. J. Phys. Chem. C 115, 23261–23266 (2011)

    Article  Google Scholar 

  164. J. Wang, X.-B. Zhang, Z.-L. Wang, L.-M. Wang, Y. Zhang, Rhodium-nickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage. Energy Environ. Sci. 5, 6885–6888 (2012)

    Article  Google Scholar 

  165. W. Li, C. Liang, W. Zhou, J. Qiu, Zhou, G. Sun, Q. Xin, Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J. Phys. Chem. B 107, 6292–6299 (2003)

    Google Scholar 

  166. K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009)

    Article  Google Scholar 

  167. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)

    Article  Google Scholar 

  168. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  Google Scholar 

  169. M.H. Maneshian, F.-L. Kuo, K. Mahdak, J. Hwang, R. Banerjee, N.D. Shepherd, The influence of high dielectric constant aluminum oxide sputter deposition on the structure and properties of multilayer epitaxial graphene. Nanotechnology 22, 205703 (2011)

    Article  Google Scholar 

  170. Y.-G. Zhou, J.-J. Chen, F. Wang, Z.-H. Sheng, X.-H. Xia, A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chem. Commun. 46, 5951–5953 (2010)

    Article  Google Scholar 

  171. R. Kou, Y. Shao, D. Wang, M.H. Engelhard, J.H. Kwak, J. Wang, V.V. Viswanathan, C. Wang, Y. Lin, Y. Wang, I.A. Aksay, J. Liu, Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun. 11, 954–957 (2009)

    Article  Google Scholar 

  172. B. Seger, P.V. Kamat, Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C 113, 7990–7995 (2009)

    Article  Google Scholar 

  173. H. Zhao, J. Yang, L. Wang, C. Tian, B. Jiang, H. Fu, Fabrication of a palladium nanoparticle/graphene nanosheet hybrid via sacrifice of a copper template and its application in catalytic oxidation of formic acid. Chem. Commun. 47, 2014–2016 (2011)

    Article  Google Scholar 

  174. D.H. Lee, J.E. Kim, T.H. Han, J.W. Hwang, S. Jeon, S.-Y. Choi, S.H. Hong, W.J. Lee, R.S. Ruoff, S.O. Kim, Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films. Adv. Mater. 22, 1247–1252 (2010)

    Article  Google Scholar 

  175. L. Dong, R.R.S. Gari, Z. Li, M.M. Craig, S. Hou, Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48, 781–787 (2010)

    Article  Google Scholar 

  176. J. Hernández, J. Solla-Gullón, E. Herrero, Gold nanoparticles synthesized in a water-in-oil microemulsion: electrochemical characterization and effect of the surface structure on the oxygen reduction reaction. J. Electroanal. Chem. 574, 185–196 (2004)

    Article  Google Scholar 

  177. J. Luo, M.M. Maye, V. Petkov, N.N. Kariuki, L. Wang, P. Njoki, D. Mott, Y. Lin, C.-J. Zhong, Phase properties of carbon-supported gold–platinum nanoparticles with different bimetallic compositions. Chem. Mater. 17, 3086–3091 (2005)

    Article  Google Scholar 

  178. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011)

    Article  Google Scholar 

  179. S. Guo, S. Dong, E. Wang, Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 4, 547–555 (2009)

    Article  Google Scholar 

  180. L. Qu, Y. Liu, J.-B. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010)

    Article  Google Scholar 

  181. S. Yang, X. Feng, X. Wang, K. Müllen, Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew. Chem. Int. Ed. 50, 5339–5343 (2011)

    Article  Google Scholar 

  182. A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006)

    Article  Google Scholar 

  183. S.M. Choi, M.H. Seo, H.J. Kim, W.B. Kim, Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation. Carbon 49, 904–909 (2011)

    Article  Google Scholar 

  184. E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma, Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett. 9, 2255–2259 (2009)

    Article  Google Scholar 

  185. Y.H. Hu, H. Wang, B. Hu, Thinnest two-dimensional nanomaterial—graphene for solar energy. ChemSusChem. 3, 782–796 (2010)

    Article  Google Scholar 

  186. C. Venkateswara Rao, A. Leela Mohana Reddy, Y. Ishikawa, P.M. Ajayan, LiNi1/3Co1/3Mn1/3O2–graphene composite as a promising cathode for lithium-ion batteries. ACS Appl. Mater. Interfaces 3, 2966–2972 (2011)

    Article  Google Scholar 

  187. N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4, 887–894 (2010)

    Article  Google Scholar 

  188. M.-Y. Yen, M.-C. Hsiao, S.-H. Liao, P.-I. Liu, H.-M. Tsai, C.-C.M. Ma, N.-W. Pu, M.-D. Ger, Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells. Carbon 49, 3597–3606 (2011)

    Article  Google Scholar 

  189. S.R. Kim, M.K. Parvez, M. Chhowalla, UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells. Chem. Phys. Lett. 483, 124–127 (2009)

    Article  Google Scholar 

  190. S. Li, Y. Luo, W. Lv, W. Yu, S. Wu, P. Hou, Q. Yang, Q. Meng, C. Liu, H.-M. Cheng, Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells. Adv. Energy Mater. 1, 486–490 (2011)

    Article  Google Scholar 

  191. H. Kim, H. Choi, S. Hwang, Y. Kim, M. Jeon, Fabrication and characterization of carbon-based counter electrodes prepared by electrophoretic deposition for dye-sensitized solar cells. Nanoscale Res. Lett. 7, 53 (2012)

    Article  Google Scholar 

  192. H. Yang, G.H. Guai, C. Guo, Q. Song, S.P. Jiang, Y. Wang, W. Zhang, C.M. Li, NiO/graphene composite for enhanced charge separation and collection in p-type dye sensitized solar cell. J. Phys. Chem. C 115, 12209–12215 (2011)

    Article  Google Scholar 

  193. G. Zhu, T. Xu, T. Lv, L. Pan, Q. Zhao, Z. Sun, Graphene-incorporated nanocrystalline TiO2 films for CdS quantum dot-sensitized solar cells. J. Electroanal. Chem. 650, 248–251 (2011)

    Article  Google Scholar 

  194. S. Sun, L. Gao, Y. Liu, J. Sun, Assembly of CdSe nanoparticles on graphene for low-temperature fabrication of quantum dot sensitized solar cell. Appl. Phys. Lett. 98, 093112–093113 (2011)

    Article  Google Scholar 

  195. J. Chen, C. Li, G. Eda, Y. Zhang, W. Lei, M. Chhowalla, W.I. Milne, W.-Q. Deng, Incorporation of graphene in quantum dot sensitized solar cells based on ZnO nanorods. Chem. Commun. 47, 6084–6086 (2011)

    Article  Google Scholar 

  196. P.A. Denis, Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur. Chem. Phys. Lett. 492, 251–257 (2010)

    Article  Google Scholar 

  197. R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T.G. Pedersen, P. Hofmann, L. Hornekaer, Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9, 315–319 (2010)

    Article  Google Scholar 

  198. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008)

    Article  Google Scholar 

  199. M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  Google Scholar 

  200. J.B. Oostinga, H.B. Heersche, X. Liu, A.F. Morpurgo, L.M.K. Vandersypen, Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7, 151–157 (2008)

    Article  Google Scholar 

  201. T. Taychatanapat, P. Jarillo-Herrero, Electronic transport in dual-gated bilayer graphene at large displacement fields. Phys. Rev. Lett. 105, 166601 (2010)

    Article  Google Scholar 

  202. Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009)

    Article  Google Scholar 

  203. F. Xia, D.B. Farmer, Y. Lin, P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010)

    Article  Google Scholar 

  204. B. Huang, Electronic properties of boron and nitrogen doped graphene nanoribbons and its application for graphene electronics. Phys. Lett. A 375, 845–848 (2011)

    Article  Google Scholar 

  205. M. Pumera, Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4, 668–674 (2011)

    Article  Google Scholar 

  206. D. Chen, L. Tang, J. Li, Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39, 3157–3180 (2010)

    Article  Google Scholar 

  207. M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng, H.L. Poh, Graphene for electrochemical sensing and biosensing. TrAC Trends Anal. Chem. 29, 954–965 (2010)

    Article  Google Scholar 

  208. D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012)

    Article  Google Scholar 

  209. B.H. Chu, C.F. Lo, J. Nicolosi, C.Y. Chang, V. Chen, W. Strupinski, S.J. Pearton, F. Ren, Hydrogen detection using platinum coated graphene grown on SiC. Sens. Actuators B 157, 500–503 (2011)

    Article  Google Scholar 

  210. M. Shafiei, R. Arsat, J. Yu, K. Kalantar-zadeh, W. Wlodarski, S. Dubin, R.B. Kaner, In Pt/graphene nano-sheet based hydrogen gas sensor. Sensors, 2009 IEEE, 25–28 Oct. 2009; 2009; pp 295–298

    Google Scholar 

  211. M. Gautam, A.H. Jayatissa, G.U. Sumanasekera, In Synthesis and characterization of transferable graphene by CVD method, Nanotechnology Materials and Devices Conference (NMDC), 2010 IEEE, 12–15 Oct. 2010; pp 1–5 (2010)

    Google Scholar 

  212. M. Qazi, G. Koley, NO2 detection using microcantilever based potentiometry. Sensors 8, 7144–7156 (2008)

    Article  Google Scholar 

  213. M. Gautam, A.H. Jayatissa, Gas sensing properties of graphene synthesized by chemical vapor deposition. Mater. Sci. Eng. C 31, 1405–1411 (2011)

    Article  Google Scholar 

  214. G. Ko, H.Y. Kim, J. Ahn, Y.M. Park, K.Y. Lee, J. Kim, Graphene-based nitrogen dioxide gas sensors. Curr. Appl. Phys. 10, 1002–1004 (2010)

    Article  Google Scholar 

  215. M.W.K. Nomani, R. Shishir, M. Qazi, D. Diwan, V.B. Shields, M.G. Spencer, G.S. Tompa, N.M. Sbrockey, G. Koley, Highly sensitive and selective detection of NO2 using epitaxial graphene on 6 H-SiC. Sens. Actuators B 150, 301–307 (2010)

    Article  Google Scholar 

  216. T.V. Cuong, V.H. Pham, J.S. Chung, E.W. Shin, D.H. Yoo, S.H. Hahn, J.S. Huh, G.H. Rue, E.J. Kim, S.H. Hur, P.A. Kohl, Solution-processed ZnO-chemically converted graphene gas sensor. Mater. Lett. 64, 2479–2482 (2010)

    Article  Google Scholar 

  217. Z. Wang, X. Zhou, J. Zhang, F. Boey, H. Zhang, Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J. Phys. Chem. C 113, 14071–14075 (2009)

    Article  Google Scholar 

  218. X. Kang, J. Wang, H. Wu, I.A. Aksay, J. Liu, Y. Lin, Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens. Bioelectron. 25, 901–905 (2009)

    Article  Google Scholar 

  219. T.T. Baby, S.S.J. Aravind, T. Arockiadoss, R.B. Rakhi, S. Ramaprabhu, Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sens. Actuators B 145, 71–77 (2010)

    Article  Google Scholar 

  220. Y. Liu, D. Yu, C. Zeng, Z. Miao, L. Dai, Biocompatible graphene oxide-based glucose biosensors. Langmuir 26, 6158–6160 (2010)

    Article  Google Scholar 

  221. Y. Zhang, S. Liu, L. Wang, X. Qin, J. Tian, W. Lu, G. Chang, X. Sun, One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing. RSC Adv. 2, 538–545 (2012)

    Article  Google Scholar 

  222. J. Yang, S. Deng, J. Lei, H. Ju, S. Gunasekaran, Electrochemical synthesis of reduced graphene sheet–AuPd alloy nanoparticle composites for enzymatic biosensing. Biosens. Bioelectron. 29, 159–166 (2011)

    Article  Google Scholar 

  223. Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu, Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 22, 2206–2210 (2010)

    Article  Google Scholar 

  224. C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens. Bioelectron. 25, 1070–1074 (2010)

    Article  Google Scholar 

  225. J.-D. Qiu, J. Huang, R.-P. Liang, Nanocomposite film based on graphene oxide for high performance flexible glucose biosensor. Sens. Actuators B 160, 287–294 (2011)

    Article  Google Scholar 

  226. Y.H. Ng, A. Iwase, A. Kudo, R. Amal, Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J. Phys. Chem. Lett. 1, 2607–2612 (2010)

    Article  Google Scholar 

  227. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-Graphene composite as a high performance photocatalyst. ACS Nano 4, 380–386 (2009)

    Article  Google Scholar 

  228. Q. Xiang, J. Yu, M. Jaroniec, Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale 3, 3670–3678 (2011)

    Article  Google Scholar 

  229. J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, L. Jiang, Hierarchically ordered macro–mesoporous TiO2–graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5, 590–596 (2010)

    Article  Google Scholar 

  230. W. Wang, J. Yu, Q. Xiang, B. Cheng, Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2–graphene composites for photodegradation of acetone in air. Appl. Catal. B 119–120, 109–116 (2012)

    Article  Google Scholar 

  231. Y. Hu, J. Jin, P. Wu, H. Zhang, C. Cai, Graphene–gold nanostructure composites fabricated by electrodeposition and their electrocatalytic activity toward the oxygen reduction and glucose oxidation. Electrochim. Acta 56, 491–500 (2010)

    Article  Google Scholar 

  232. K.-S. Kim, I.-J. Kim, S.-J. Park, Influence of Ag doped graphene on electrochemical behaviors and specific capacitance of polypyrrole-based nanocomposites. Synth. Met. 160, 2355–2360 (2010)

    Article  Google Scholar 

  233. S. Liu, J. Wang, J. Zeng, J. Ou, Z. Li, X. Liu, S. Yang, “Green” electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property. J. Power Sources 195, 4628–4633 (2010)

    Article  Google Scholar 

  234. X. Fu, Y. Liu, X. Cao, J. Jin, Q. Liu, J. Zhang, FeCo–Nx embedded graphene as high performance catalysts for oxygen reduction reaction. Appl. Catal. B 130–131, 143–151 (2013)

    Article  Google Scholar 

  235. F. Zhang, C. Hou, Q. Zhang, H. Wang, Y. Li, Graphene sheets/cobalt nanocomposites as low-cost/high-performance catalysts for hydrogen generation. Mater. Chem. Phys. 135, 826–831 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Kwon Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, R., Kim, HJ., Oh, IK. (2016). Bio-Inspired Engineering of 3D Carbon Nanostructures. In: Zhang, M., Naik, R., Dai, L. (eds) Carbon Nanomaterials for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-22861-7_12

Download citation

Publish with us

Policies and ethics