Advertisement

Introduction

  • Farrukh Mukhamedov
  • Nasir Ganikhodjaev
Part of the Lecture Notes in Mathematics book series (LNM, volume 2133)

Abstract

This chapter has introductory character. Here we discuss about some models which can be described by quadratic stochastic operators.

References

  1. 18.
    Bernstein, S.N.: The solution of a mathematical problem related to the theory of heredity. Uchn. Zapiski NI Kaf. Ukr. Otd. Mat. (1), 83–115 (1924) (Russian)Google Scholar
  2. 24.
    Boltzmann, L.: Selected Papers. Nauka, Moscow (1984, Russian)Google Scholar
  3. 34.
    Dahlberg, C.: Mathematical Methods for Population Genetics. Interscience Publishing, New York (1948)Google Scholar
  4. 39.
    Eemel’yanov, E.Ya.: Non-spectral asymptotic analysis of one-parameter operator semigroups, In: Operator Theory: Advances and Applications, vol. 173. Birkhauser Verlag, Basel (2007)Google Scholar
  5. 43.
    Fisher, M.E., Goh, B.S.: Stability in a class of discrete-time models of interacting populations. J. Math. Biol. 4, 265–274 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 44.
    Fisher, R.A.: The Genetical Theory of Natural Selection. Clarendon Press, Oxford (1930)CrossRefzbMATHGoogle Scholar
  7. 99.
    Hofbauer, J., Hutson, V., Jansen, W.: Coexistence for systems governed by difference equations of Lotka–Volterra type. J. Math. Biol. 25, 553–570 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 100.
    Hofbauer, J., Sigmund, K.: The Theory of Evolution and Dynamical Systems. Cambridge University Press, Cambridge (1988)zbMATHGoogle Scholar
  9. 107.
    Jajte, R.: Strong linit theorems in non-commutative probability. In: Lecture Notes in Mathematics, vol. 1110. Springer, Berlin-Heidelberg (1984)Google Scholar
  10. 112.
    Jenks, R.D.: Homogeneous multidimensional differential systems for mathematical models. J. Diff. Eqs. 4, 549–565 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 114.
    Jenks, R.D.: Quadratic differential systems for interactive population models. J. Diff. Eqs. 5, 497–514 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 117.
    Kesten, H.: Quadratic transformations: a model for population growth, I, II. Adv. Appl.Probab. 2(1), 1–82; 2(2), 179–228 (1970)Google Scholar
  13. 129.
    Kummerer, B.: Quantum Markov processes and applications in physics. Lecture Notes in Mathematics, Springer-Verlag, vol. 1866, pp. 259–330 (2006)MathSciNetCrossRefGoogle Scholar
  14. 133.
    Li, S.-T., Li, D.-M., Qu, G.-K.: On stability and chaos of discrete population model for a single-species with harvesting. J. Harbin Univ. Sci. Tech. 6, 021 (2006)Google Scholar
  15. 137.
    Lyubich, Yu.I.: Basic concepts and theorems of the evolution genetics of free populations. Russian Math. Surv. 26, 51–116 (1971)CrossRefzbMATHGoogle Scholar
  16. 139.
    Lyubich, Yu.I.: Mathematical Structures in Population Genetics. Springer, Berlin-New York (1992)CrossRefzbMATHGoogle Scholar
  17. 188.
    Mukhamedov, F., Qaralleh, I.: On derivations of genetic algebras. J. Phys. Conf. Ser. 553, 012004 (2014)CrossRefGoogle Scholar
  18. 202.
    Parthasarathy, K.R.: An introduction to quantum stochastic calculus. In: Monographs in Mathematics, vol. 85. Birkhhauser Verlag, Basel (1992)Google Scholar
  19. 204.
    Plank, M., Losert, V.: Hamiltonian structures for the n-dimensional Lotka–Volterra equations. J. Math. Phys. 36, 3520–3543 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 249.
    Udwadia, F.E., Raju, N.: Some global properties of a pair of coupled maps: quasi-symmetry, periodicity and syncronicity. Phys. D 111, 16–26 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 250.
    Ulam, S.M.: Problems in Modern Mathematics. Wiley, New York (1964)zbMATHGoogle Scholar
  22. 252.
    Volterra, V.: Lois de fluctuation de la population de plusieurs espèces coexistant dans le même milieu. Association Franc. Lyon 1926, 96–98 (1927)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Farrukh Mukhamedov
    • 1
  • Nasir Ganikhodjaev
    • 1
  1. 1.Dept. of Comput. & Theor. SciencesInternational Islamic University MalaysiaKuantanMalaysia

Personalised recommendations