Skip to main content

Fundamentals of Biological Thermodynamics, Biomolecules, Cellular Genetics, and Bioenergetics

  • Chapter
Quantum Biological Information Theory
  • 1682 Accesses

Abstract

In this chapter, we describe the basics of biomolecules, cellular genetics, and bioenergetics. The chapter starts with the biological thermodynamics. The following biomolecules will be described: amino acids, peptides, proteins, carbohydrates, and corresponding polymers; nucleic acid, nucleosides, and nucleotides; and phospholipids. Regarding the cell dynamics, the following topics will be described: DNA structure, the genetic code, gene anatomy, DNA synthesis and repair, transcription, and translation. Regarding the energetics of the cell, we will discuss universal forms of energy, namely, ATP and proton motive force, and the metabolism of the organism. Full details on prokaryote organism metabolism regulation will be provided. Further, we will discuss the relationship between genetics and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tözeren A, Byers SW (2004) New biology for engineers and computer scientists. Pearson Education, Upper Saddle River

    Google Scholar 

  2. Cohen WW (2007) A computer scientist’s guide to cell biology. Springer, New York

    Google Scholar 

  3. Johnson AT (2010) Biology for engineers. CRC, Boca Raton

    Google Scholar 

  4. Jacob F (1976) The logic of life: history of heredity. Gallimard, Paris (in French)

    Google Scholar 

  5. Božo J (2007) Bioenergetics: basic principles. Gradjevinska Knjiga, Zrenjanin (in Serbian)

    Google Scholar 

  6. Watson JD, Baker TA, Bell SP, Gann A, Levine M, Losick R (2013) Molecular biology of the gene, 7th edn. Benjamin Cummings, Menlo Park

    Google Scholar 

  7. Haynie DT (2008) Biological thermodynamics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  8. Wannier GH (1987) Statistical physics. Dover, New York (reprint)

    MATH  Google Scholar 

  9. Djordjevic IB, Xu L, Wang T (2012) Statistical physics inspired energy-efficient coded-modulation for optical communications. Opt Lett 37(8):1340–1342

    Article  Google Scholar 

  10. Bray D (1995) Protein molecules as computational elements in living cells. Nature 376:307–312

    Article  Google Scholar 

  11. Regev A, Shapiro E (2002) Cellular abstractions: cells as computation. Nature 419:343

    Article  Google Scholar 

  12. Waite GN, Waite L (2007) Applied cell and molecular biology for engineers. McGraw-Hill, New York

    Google Scholar 

  13. Malacinski G (2003) Essentials of molecular biology, 4th edn. Jones and Bartlett, Sadbury

    Google Scholar 

  14. Bolsover SR, Shephard EA, White HA, Hyams JS (2011) Cell biology: a short course, 3rd edn. Wiley, Chichester

    Google Scholar 

  15. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  16. Lodish H, Berk A, Kaiser CA, Krieger M, Bretscher A, Ploegh H, Amon A, Scott MP (2012) Molecular cell biology, 7th edn. W. H. Freeman, New York

    Google Scholar 

  17. Karp G (2007) Cell and molecular biology: concepts and experiments, 5th edn. Wiley, New York

    Google Scholar 

  18. Wolfe J (2002) Cellular thermodynamics. In: Encyclopedia of life sciences. Macmillan/Nature Publishing Group, London

    Google Scholar 

  19. Nakano T, Eckford AW, Haraguchi T (2013) Molecular communication. Cambridge University Press, Cambridge

    Book  Google Scholar 

  20. Chagraff E (1950) Chemical specificity of the nucleic acids and mechanism of their enzymatic degradation. Experientia 6:201–240

    Article  Google Scholar 

  21. Watson JD, Crick FHC (1953) Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–967

    Article  Google Scholar 

  22. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  Google Scholar 

  23. Buchler NE, Gerland U, Hwa T (2003) On schemes of combinational logic. Proc Natl Acad Sci U S A 100:5136–5141

    Article  Google Scholar 

  24. Yuh CH, Bolouri H, Davidson EH (1998) Genomic cis-regulatory logic: functional analysis and computational model of a sea urchin gene control system. Science 279:1896–1902

    Article  Google Scholar 

  25. Clancy S (2008) DNA damage & repair: mechanisms for maintain DNA integrity. Nat Educ 1:103

    Google Scholar 

  26. Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Mol Cell Biol 9:297–308

    Google Scholar 

  27. Iyama T, Wilson DM III (2013) DNA repair mechanisms in dividing and non-dividing cells. DNA Repair 12:620–636

    Article  Google Scholar 

  28. Hamperl S, Cimprich KA (2014) The contribution of co-transcriptional RNA:DNA hybrid structure to DNA damage and genome instability. DNA Repair 19:84–94

    Article  Google Scholar 

  29. Cotterill S, Kearsey S (2009) Eukaryotic DNA polymerases. In: Encyclopedia of life sciences (ELS). Wiley, Chichester

    Google Scholar 

  30. Djordjevic IB (2012) Quantum biological channel modeling and capacity calculation. Life 2:377–391

    Article  Google Scholar 

  31. Foster PL (1993) Adaptive mutation: the uses of adversity. Annu Rev Microbiol 47:467–504

    Article  Google Scholar 

  32. Rosenberg SM (2001) Evolving responsively: adaptive mutation. Nat Rev Genet 2:504–515

    Article  Google Scholar 

  33. Roth JR, Kugelberg E, Reams AB, Kofoid E, Andersson DI (2006) Origin of mutations under selection: the adaptive mutation controversy. Annu Rev Microbiol 60:477–501

    Article  Google Scholar 

  34. Darwin C (1859) On the origin of species. Murray, London

    Google Scholar 

  35. Lamarck JB (1809) Zoological philosophy: exposition with regard to the natural history of animals. Dentu, Paris (in French)

    Google Scholar 

  36. Koonin EV, Wolf YI (2009) Is evolution Darwinian or/and Lamarckian? Biol Direct 4:42

    Article  Google Scholar 

  37. Dexheimer TS (2013) DNA repair pathways and mechanisms. In: Mathews LA, Cabarcas SM, Hurt E (eds) DNA repair of cancer stem cells. Springer, Dordrecht, pp 19–32

    Chapter  Google Scholar 

  38. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  Google Scholar 

  39. Fenchel T (2002) Origin & early evolution of life. Oxford University Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Djordjevic, I.B. (2016). Fundamentals of Biological Thermodynamics, Biomolecules, Cellular Genetics, and Bioenergetics. In: Quantum Biological Information Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-22816-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22816-7_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22815-0

  • Online ISBN: 978-3-319-22816-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics