Skip to main content

Improvement of Harvesting Technology for Algal Biomass Production

  • Chapter

Abstract

Global demands for biomass utilization as food, feed, biofuels and chemical production have been increased to a great extent. For a sustainable future it is necessary to minimise the environmental impact of our activities keeping in mind the socio-economic parameters along with operational efficiency. Our continuous dependence on fossil fuels is unsustainable because of its dwindling world reserves and global warming due to its use. Recent research has focussed on the development of renewable and potentially carbon neutral biofuels. First generation biofuels derived from terrestrial crops has impacted the environment in a big way by hastening deforestation and environmental pollution. The food vs. fuel debate has also come into force. Replacing them with second generation biofuels which is derived from lignocellulosic feedstock has addressed majority of the problems. But a concern over land usage and competition still remains. Third generation biofuels derived from microalgae seem to be the solution to the demand for alternative energy sources which is devoid of the major drawbacks associated with first and second generation of biofuels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adan, B. and Lee, E.W. (1980). High rate algae growth pond under tropical conditions. Presented at a workshop on waste treatment and nutrient recovery. Singapore, 27–29 February, 1980.

    Google Scholar 

  • Alfafara, C.G., Nakano, K., Nomura, N., Igarashi, T. and Matsumura, M. (2002). Operating and scale-up factors for the electrolytic removal of algae from eutrophied lake water. Journal of Chemical Technology and Biotechnology, 77, 871–876.

    Article  CAS  Google Scholar 

  • Amaro, H.M., Guedes, A.C. and Malcata, F.X. (2011). Advances and perspectives in using microalgae to produce biodiesel. Applied Energy, 88(10), 3402–3410.

    Article  CAS  Google Scholar 

  • Azarian, G.H., Mesdaghinia, A.R., Vaezi, F., Nabizadeh, R. and Nematollahi, D. (2007). Algae removal by electro-coagulation process, application for treatment of the effluent from an industrial wastewater treatment plant. Iranian Journal of Public Health, 36, 57–64.

    CAS  Google Scholar 

  • Bare, W.F.R., Jones, N.B. and Middlebrook, E.J. (1975). Algae removal using dissolved air flotation. Journal of Water Pollution Control Federation, 47, 153–169.

    CAS  Google Scholar 

  • Ben-Amotz, A. and Avron, M. (1990). The biotechnology of cultivating the halotolerant alga Dunaliella. Trends in Biotechnology, 8, 121–125.

    Article  CAS  Google Scholar 

  • Benemann, J.R., Kopman, B.L., Weismsman, D.E., Eisenverg, D.E. and Goebel, R.P. (1980). Development of microalgae harvesting and high rate ponds technologies in California. In: Shelef, B., Solder, C.J. (Eds), Algae Biomass. Elsevier, Amsterdam.

    Google Scholar 

  • Benoufella, F., Laplanche, A., Boisdon, V. and Bourbigot, M.M. (1994). Elimination of microcystis cyanobacteria (blue-green algae) by an ozoflotation process—A pilot-plant study. Water Science & Technology, 30, 245–257.

    CAS  Google Scholar 

  • Betzer, N., Argaman, Y. and Kott, Y. (1980). Effluent treatment and algae recovery by ozone-induced flotation. Water Research, 14, 1003–1009.

    Article  Google Scholar 

  • Bosma, R., van Spronsen, W.A., Tramper, J. and Wijffels, R.H. (2003). Ultrasound, a new separation technique to harvest microalgae. Journal of Applied Phycology, 15, 143–153.

    Article  Google Scholar 

  • Bratby, J. (2008). Coagulation and Flocculation in Water and Wastewater Treatment. IWA Publishing.

    Google Scholar 

  • Brennan, L. and Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557–577.

    Article  CAS  Google Scholar 

  • Cerff, M., Morweiser, M., Dillschneider, R., Michel, A., Menzel, K. and Posten, P. (2012). Harvesting fresh water and marine algae by magnetic separation: Screening of separation parameters and high gradient magnetic filtration. Bioresource Technology, 118, 289–295.

    Article  CAS  Google Scholar 

  • Chang, Y.R. and Lee, D.J. (2012). Coagulation–membrane filtration of Chlorella vulgaris at different growth phases. Drying Technology, 30, 1317–1322.

    Article  CAS  Google Scholar 

  • Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource technology, 102(1), 71–81.

    Article  CAS  Google Scholar 

  • Chen, M.Y., Liu, J.C. and Ju, Y.H. (1998). Flotation removal of algae from water. Colloids and Surfaces B, 12, 49–55.

    Article  CAS  Google Scholar 

  • Cheng, Y.L., Juang, Y.C., Liao, G.Y., Ho, S.H., Yeh, K.L., Chen, C.Y., Chang, J.S., Liu, J.C. and Lee, D.J. (2010). Dispersed ozone flotation of Chlorella vulgaris. Bioresource Technology, 101, 9092–9096.

    Article  CAS  Google Scholar 

  • Cheng, Y.L., Juang, Y.C., Liao, G.Y., Tsai, P.W., Ho, S.H., Yeh, K.L., Chen, C.Y., Chang, J.S., Liu, J.C., Chen, W.M. and Lee, D.J. (2011). Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation. Bioresource Technnology, 102, 82–87.

    Article  CAS  Google Scholar 

  • Choi, S.K., Lee, J.Y., Kwon, D.Y. and Cho, K.J. (2006). Settling characteristics of problem algae in the water treatment process. Water Science & Technology, 53, 113–119.

    Article  CAS  Google Scholar 

  • Christenson, L. and Sims, R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances, 29, 686–702.

    Article  CAS  Google Scholar 

  • Contreras, S., Pieber, M., del Rio, A., Soto, M.A., Toha, J. and Veloz, A. (1981). A highly efficient electrolytic method for microalgae flocculation from aqueous cultures. Biotechnology and Bioengineering, 23, 1165–1168.

    Article  CAS  Google Scholar 

  • Craggs, R., Sutherland, D. and Campbell, H. (2012). Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. Journal of Applied Phycology, 24, 329–337.

    Article  CAS  Google Scholar 

  • Edzwald, J.K. (1993). Algae, bubbles, coagulants, and dissolved air flotation. Water Science & Technology, 27, 67–81.

    CAS  Google Scholar 

  • Eldridge, R.J., Hill, D.R.A. and Gladman, B.R. (2012). A comparative study of the coagulation behaviour of marine microalgae. Journal of Applied Phycology, 24, 1667–1679.

    Article  CAS  Google Scholar 

  • Friedman, A.A., Peaks, D.A. and Nichols, R.L. (1977). Algae separation from oxidation pond effluents. Journal of Water Pollution Control Federation, 49, 111–119.

    CAS  Google Scholar 

  • Gao, S., Du, M., Tian, J., Yang, J., Ma, F. and Nan, J. (2010b). Effects of chloride ions on electro-coagulation-flotation process with aluminum electrodes for algae removal. Journal of Hazardous Materials, 182, 827–834.

    Article  CAS  Google Scholar 

  • Gao, S., Yang, J., Tian, J., Ma, F., Tu, G. and Du, M. (2010a). Electro-coagulation-flotation process for algae removal. J Hazard Mater, 177, 336–343.

    Article  CAS  Google Scholar 

  • Georgianna, D.R. and Mayfield, S.P. (2012). Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 488, 329–335.

    Article  CAS  Google Scholar 

  • Gouveia, L. (2011). Microalgae as Feedstock for Biofuels. Springer. (http://dz.doi.org/10.1063/1.3294480)

  • Govender, P., Domingo, J.L., Bester, M.C., Pretorius, I.S. and Bauer, F.F. (2008). Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Applied Environmental Microbiology, 74, 6041–6052.

    Article  CAS  Google Scholar 

  • Greenwell, H.C., Laurens, L.M.L. , Shields, R.J., Lovitt, R.W. and Flynn K.J. (2010). Placing microalgae on the biofuels priority list: A review of the technological challenges. Journal of the Royal Society Interface, 7, 703–726.

    Article  CAS  Google Scholar 

  • Gutzeit, G., Lorch, D., Weber, A., Engels, M. and Neis, U. (2005). Bioflocculent algal-bacterial biomass improves low-cost wastewater treatment. Water Science & Technology, 52, 9–18.

    CAS  Google Scholar 

  • Habib, M.A., Parvin, M., Huntington, T.C. and Hasan, M.R. (2008). A review on culture, production and use of Spirulina as food for humans and needs for domestic animals and fish. FAO Fisheries and Aquaculture Circular No. 1034, Food and Agriculture Organization of the United Nations, FAO Fisheries and Aquaculture Department Rome, Italy.

    Google Scholar 

  • Harun, R., Singh, M., Forde, G.M. and Danquah, M.K. (2010). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14, 1037–1047.

    Article  CAS  Google Scholar 

  • Jin, P.K., Wang, X.C. and Hu, G. (2006). A dispersed-ozone flotation (DOF) separator for tertiary wastewater treatment. Water Science & Technology, 53, 151–157.

    Article  CAS  Google Scholar 

  • Kim, J., Ryu, B.G., Kim, B.K., Han, J.I. and Yang, J.W. (2012). Continuous microalgae recovery using electrolysis with polarity exchange. Bioresource Technology, 124, 164–170.

    Article  Google Scholar 

  • Knuckey, R.M., Brown, M.R., Robert, R. and Frampton, D.M.F. (2006). Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquaculture Engineering, 35, 300–313.

    Article  Google Scholar 

  • Koopman, B.L., Thomson, R., Yackzan, R., Benemann, J.R. and Oswald, W.J. (1978). Investigation of the pond isolation process for microalgae separation from woodlands waste pond effluents. Final Report, U.C. Berkeley.

    Google Scholar 

  • Kumar, H.D., Yadava, P.K. and Gaur, J.P. (1981). Electrical flocculation of the unicellular green algae Chlorella vulgaris. Aquacultural Botany, 11, 187–195.

    Article  CAS  Google Scholar 

  • Larkum, A.W.D, Ross, I.L., Kruse, O. and Hankamer, B. (2012). Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends in Biotechnology, 30, 198–205.

    Article  CAS  Google Scholar 

  • Lazarova, V., Phillippe, R., Sturny, V. and Arcangell, J.P. (2006). Evaluation of economic viability and benefits of urban water reuse and its contribution to sustainable development. Water Practical Technology, 1, 1–11.

    Google Scholar 

  • Lee, A.K., Lewis, D.M. and Ashman, P.J. (2008). Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. Journal of Applied Phycology, 21, 559–567.

    Article  Google Scholar 

  • Levin, G.V., Clendenning, J.R., Gibor, A. and Bogar, F.D. (1962). Harvesting of algae by froth flotation. Applied Microbiology, 10, 169–175.

    CAS  Google Scholar 

  • Li, Y.G., Xu, L., Huang, Y.M., Wang, F., Guo, C. and Liu, C.Z. (2011). Microalgal biodiesel in China: Opportunities and challenges. Applied Energy, 88(10), 3432–3437.

    Article  CAS  Google Scholar 

  • Lim, J.K., Chieh, D.C.J., Jalak, S.A., Toh, P.Y., Yasin, N.H.M., Ng, B.W. and Ahmad, A.L. (2012). Rapid magnetophoretic separation of microalgae. Small, 8, 1683–1692.

    Article  CAS  Google Scholar 

  • Liu, D., Li, F. and Zhang, B. (2009). Removal of algal blooms in freshwater using magnetic polymer. Water Science and Technology, 59, 1085–1092.

    Article  CAS  Google Scholar 

  • Lundquist, T.J., Woertz, I.C., Quinn, N.W.T. and Benemann, J.R. (2010). A Realistic Technology and Engineering Assessment of Algae Biofuel Production. Energy Biosciences Institute, University of California, Berkeley.

    Google Scholar 

  • McGarry, M.G. and Durrani, S.M.A. (1970). Flotation as a method of harvesting algae from ponds. Research program report No. 5. Asian Institute of Technology, Bangkok.

    Google Scholar 

  • Mendez, M., Behnke, C., Poon, Y. and Lee, P. (2010). Induction of flocculation in photosynthetic organisms. WO 2009158658.

    Google Scholar 

  • Mohn, F.H. (1980). Experiences and strategies in the recovery of biomass from mass cultures of microalgae. In: Shelef, B., Solder, C.J. (Eds), Algae Biomass. Elsevier, Amsterdam, pp. 547–571.

    Google Scholar 

  • Mohn, F.H. and Soeder, C.J. (1978). Improved technologies for harvesting and processing of microalgae and their impact on production costs. Archives in Hydrobiology Bech Ergebn Lemnology, 11, 228–253.

    Google Scholar 

  • Molina Grima, E., Belarbi, E.H., Acién Fernández, F.G., Robles Medina, A. and Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 20, 491–515.

    Article  CAS  Google Scholar 

  • Mollah, M.Y.A., Morkovsky, P., Gomes, J.A.G., Kesmez, M., Parga, J. and Cocke, D.L. (2004). Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114, 199–210.

    Article  CAS  Google Scholar 

  • Moraine, R., Shelef, G., Sandbank, E., Bar Moshe, Z. and Schwarbard, L. (1980). Recovery of sewage borne algae: Flocculation and centrifugation techniques. In: Shelef, G., Solder, C.J. (Eds), Algae Biomass. Elsevier, North Holland.

    Google Scholar 

  • Morweiser, M., Kruse, O., Hankamer, B. and Posten, C. (2010). Developments and perspectives of photobioreactors for biofuel production. Applied Microbiology and Biotechnology, 87, 1291–1301.

    Article  CAS  Google Scholar 

  • OriginOil (2010). http://www.originoil.com November 2010.

  • Pearsall, R.V., Connelly, R.L., Fountain, M.E., Hearn, C.S., Werst, M.D., Hebner, R.E. and Kelley, E.F. (2011). Electrically dewatering microalgae. IEEE Transactions on Dielectrics and Electrical Insulation, 18, 1578–1583.

    Article  CAS  Google Scholar 

  • Petrusevski, B., Bolier, G., van Breemen, A.N. and Alaerts, G.J. (1995). Tangential flow filtration: A method to concentrate freshwater algae. Water Research, 29, 1419–1424.

    Article  CAS  Google Scholar 

  • Phoochinda, W. and White, D.A. (2003). Removal of algae using froth flotation. Environmental Technology, 24, 87–96.

    Article  CAS  Google Scholar 

  • Phoochinda, W., White, D.A. and Briscoe, B.J. (2004). An algal removal using a combination of flocculation and flotation process. Environmental Technology, 25, 1385–1395.

    Article  CAS  Google Scholar 

  • Poelman, E., DePauw, N. and Jeurissen, B. (1997). Potential of electrolytic flocculation for recovery of micro-algae. Resources Conservation and Recycling, 19, 1–10.

    Article  Google Scholar 

  • Rawat, I., Kumar, R.R., Mutanda, T. and Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88, 3411–3424.

    Article  CAS  Google Scholar 

  • Reynolds, J.H., Middlebrooks, E.J., Porcella, D.B. and Grenney, W.J. (1975). Effects of temperature on oil refinery waste toxicity. Journal of Water Pollution Control Federation, 46, 2674–2693.

    Google Scholar 

  • Rossi, N., Jaouen, O., Legentilhomme, P. and Petit, I. (2004). Harvesting of cyanobacterium Arthospira platensis using organic filtration membranes. Food and Bioproducts Processing, 82, 244–250.

    Article  Google Scholar 

  • Rossignol, N., Vandanjon, L., Jaouen, O. and Quemeneur, F. (1999). Membrane technology for the continuous separation microalgae/culture medium: Compared performances of cross flow microfiltration and ultrafiltration. Aquaculture Engineering, 20, 191–208.

    Article  Google Scholar 

  • Rwehumbiza, V.M., Harrison, R. and Thomsen, L. (2012). Alum-induced flocculation of preconcentrated Nannochloropsis salina: Residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling. Chemical Engineering Journal, 200–202, 168–175.

    Article  Google Scholar 

  • Salim, S., Bosma, R., Vermue, M.H. and Wijffels, R.H. (2011). Harvesting of microalgae by bio-flocculation. Journal of Applied Phycology, 23, 849–855.

    Article  Google Scholar 

  • Salim, S., Vermuë, M.H. and Wijffels, R.H. (2012). Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation. Bioresource Technology, 118, 49–55.

    Article  CAS  Google Scholar 

  • Sandbank, E. (1979). Harvesting of microalgae from wastewater stabilization pond effluents and their utilization as a fish feed. D.Sc. thesis presented to the senate of the Technion – Israel Institute of Technology.

    Google Scholar 

  • Sandbank, E., Shelef, G. and Wachs, A.M. (1974). Improved electroflotation for the removal of suspended solids from algae pond effluents. Water Research, 8, 587–592.

    Article  CAS  Google Scholar 

  • Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O. and Hankamer, B. (2008). Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Research, 1, 20–43.

    Article  Google Scholar 

  • Schlesinger, A., Eisenstadt, D., Bar-Gil, A., Carmely, H., Einbinder, S. and Gressel, J. (2012). Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production. Biotechnology Advances, 30, 1023–1030.

    Article  CAS  Google Scholar 

  • Scholz, M., Hoshino, T., Johnson, D., Riley, M.R. and Cuello, J.L. (2011). Flocculation of wall-deficient cells of Chlamydomonas reinhardtii mutant cw15 by calcium and methanol. Biomass and Bioenergy, 35, 4835–4840.

    Article  CAS  Google Scholar 

  • Shelef, G., Azov, Y., Moreine, R. and Oron, G. (1980). Algae mass production as an integral part of a wastewater treatment and reclamation system. In: Shelef, B., Solder, C.J. (Eds.), Algae Biomass. Elsevier, North Holland.

    Google Scholar 

  • Shelef, G., Sukenik, A. and Green, M. (1984). Microalgae harvesting and processing: A literature review. Report prepared for the US Department of Energy, Technion Research and Development Foundation Ltd., Haifa, Israel.

    Google Scholar 

  • Show, K.Y., Lee, D.J. and Chang, J.S. (2013). Algal biomass dehydration. Bioresource Technology, 135, 720–729.

    Article  CAS  Google Scholar 

  • Spilling, K., Seppälä, J. and Tamminen, T. (2011). Inducing autoflocculation in the diatom Phaeodactylum tricornutum through CO2 regulation. Journal of Applied Phycology, 23, 959–966.

    Article  CAS  Google Scholar 

  • Su, Y., Mennerich, A. and Urban, B. (2011). Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Research, 45, 3351–3358.

    Article  CAS  Google Scholar 

  • Taylor, R.L., Rand, J.D. and Caldwell, G.S. (2012). Treatment with algae extracts promotes flocculation, and enhances growth and neutral lipid content in Nannochloropsis oculata – A candidate for biofuel production. Mar. Biotechnol., 6, 774–781.

    Article  Google Scholar 

  • Teixeira, C.M.L.L., Kirsten, F.V. and Teixeira, P.C.N. (2012). Evaluation of Moringa oleifera seed flour as a flocculating agent for potential biodiesel producer microalgae. Journal of Applied Phycology, 24, 557–563.

    Article  CAS  Google Scholar 

  • Tenney, M.W., Echelberger, W.F., Schuessler, R.G. and Pavpni, J.L. (1969). Algal flocculation with synthetic organic polyelectrolytes. Applied Bacteriology, 18, 965–971.

    CAS  Google Scholar 

  • Uduman, N., Qi, Y., Danquah, M. K., Forde, G. M., & Hoadley, A. (2010a). Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. Journal of renewable and sustainable energy, 2(1), 012701.

    Article  Google Scholar 

  • Uduman, N., Qi, Y., Danquah, M.K. and Hoadley, A.F. (2010b). Marine microalgae flocculation and focussed beam reflectance measurement. Chemical Engineering Journal, 162, 935–940.

    Article  CAS  Google Scholar 

  • Van Den Hende, S., Vervaeren, H., Saveyn, H., Maes, G. and Boon, N. (2011). Microalgal bacterial floc properties are improved by a balanced inorganic/organic carbon ratio. Biotechnology and Bioengineering, 108, 549–558.

    Article  Google Scholar 

  • Vandamme, D., Foubert, I., & Muylaert, K. (2013). Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in biotechnology, 31(4), 233–239.

    Article  CAS  Google Scholar 

  • Vandamme, D., Foubert, I., Fraeye, I., Meesschaert, B. and Muylaert, K. (2012). Flocculation of Chlorella vulgaris induced by high pH: Role of magnesium and calcium and practical implications. Bioresource Technology, 105, 114–119.

    Article  CAS  Google Scholar 

  • Vandamme, D., Foubert, I., Meesschaert, B. and Muylaert, K. (2010). Flocculation of microalgae using cationic starch. Journal of Applied Phycology, 22, 525–530.

    Article  Google Scholar 

  • Vandamme, D., Pontes, S.C.V., Goiris, K., Foubert, I., Jan Pinoy, L.J. and Muylaert, K. (2011). Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnology and Bioengineering, 108, 2320–2329.

    Article  CAS  Google Scholar 

  • Wettman, J.W. and Cravens, J.B. (1980). Cost effective lagoon upgrading with microscreens. Proceedings of the 3rd Annual Pollution Control Association, Oklahoma, June 5, 1980.

    Google Scholar 

  • Wijffels, R.H., Barbosa, M.J. and Eppink, M.H.M. (2010). Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioproducts and Biorefining, 4, 287–295.

    Article  CAS  Google Scholar 

  • Wilde, E.W., Benemann, J.R., Weissman, J.C. and Tillett, D.M. (1991). Cultivation of algae and nutrient removal in a waste heat utilization process. Journal of Applied Phycology, 3, 159–167.

    Article  Google Scholar 

  • Wu, Z., Zhu, Y., Huang, W., Zhang, C., Li, T., Zhang, Y. and Li, A. (2012). Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresource Technology, 110, 496–502.

    Article  CAS  Google Scholar 

  • Wyatt, N.B., Gloe, L.M., Brady, P.V., Hewson, J.C., Grillet, A.M., Hankins, M.G. and Pohl, P.I. (2012). Critical conditions for ferric chloride-induced flocculation of freshwater algae. Biotechnology and Bioengineering, 109, 493–501.

    Article  CAS  Google Scholar 

  • Xu, L., Guo, C., Wang, F., Zheng, S. and Liu, C.Z. (2011). A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresource Technology, 102, 10047–10051.

    Article  CAS  Google Scholar 

  • Zhang, J. and Hu, B. (2012). A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresource Technology, 114, 529–535.

    Article  CAS  Google Scholar 

  • Zhang, X. et al. (2012). Influence of growth phase on harvesting of Chlorella zofingiensis by dissolved air flotation. Bioresource Technology, 37, 166–176.

    CAS  Google Scholar 

  • Zhang, G., Zhang, P., & Fan, M. (2009). Ultrasound-enhanced coagulation for Microcystis aeruginosa removal. Ultrasonics sonochemistry, 16(3), 334–338.

    Article  CAS  Google Scholar 

  • Zheng, H., Gao, Z., Yin, J., Tang, X., Ji, X. and Huang, H. (2012). Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresource Technology, 112, 212–220.

    Article  CAS  Google Scholar 

  • Zhou, W., Cheng, Y., Li, Y., Wan, Y., Liu, Y., Lin, X. and Ruan, R. (2012). Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Applied Biochemistry and Biotechnology, 167, 214–228.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supratim Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Capital Publishing Company

About this chapter

Cite this chapter

Ghosh, S., Das, D. (2015). Improvement of Harvesting Technology for Algal Biomass Production. In: Das, D. (eds) Algal Biorefinery: An Integrated Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-22813-6_8

Download citation

Publish with us

Policies and ethics