Skip to main content

Role of Microalgae in Microbial Fuel Cell

  • Chapter

Abstract

The reliance on conventional fossil fuels has resulted in the imminent energy catastrophe with the combined challenge of global warming and the depletion of these energy reserves (Nayak BK, Pandit S, Das D, Biohydrogen. In: Kennes C, Veiga ría C (eds) Air pollution prevention and control, Chapter 15, Wiley, pp 345–381, 2013). Our earth today is facing many environmental problems, ranging from pollution, global warming due to the accumulation of CO2 in the atmosphere, depletion of natural energy sources like coal and petroleum and the increasing need for sustainable energy sources (Bentley, Energy Policy, 30(3):189–205, 2002). Research on renewable methods for producing energy has received utmost attention in last few years. Standing in such a situation, the use of microalgae to convert CO2 into potential biomass coupled with their ability to produce oxygen gas, assumes strategic importance (Popp et al, Renew Sustain Energy Rev 32:559–578, 2014). Significant research is being carried out in this field to exploit this ability of microalgae and integrate it with microbial fuel cells. This integration becomes especially favourable considering the fact that the phototrophic organisms act as in-situ generators of oxygen which facilitate the reaction in cathode chamber of the MFC. Further, microalgae also effectively removes phosphorous and nitrogen from the wastewater which might not be possible solely by the MFCs (Rozendal et al, Trends Biotechnol, 26(8):450–459, 2008). The use of phototrophic organisms in MFCs leads to the development of photosynthetic microbial fuel cells or PMFCs (Rosenbaum et al, Curr Opin Biotechnol, 21(3):259–264, 2010).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bentley, R.W. (2002). Global oil & gas depletion: An overview. Energy Policy, 30(3), 189–205.

    Article  Google Scholar 

  • Cao, X., Huang, X., Boon, N., Liang, P. and Fan, M. (2008). Electricity generation by an enriched phototrophic consortium in a microbial fuel cell. Electrochemistry Communications, 10(9), 1392–1395.

    Article  CAS  Google Scholar 

  • Cao, X., Huang, X., Liang, P., Boon, N., Fan, M., Zhang, L. and Zhang, X. (2009). A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy & Environmental Science, 2(5), 498–501.

    Article  CAS  Google Scholar 

  • Chandra, R., Venkata Subhash, G. and Venkata Mohan, S. (2012). Mixotrophic operation of photo-bioelectrocatalytic fuel cell under anoxygenic microenvironment enhances the light dependent bioelectrogenic activity. Bioresource Technology, 109, 46–56.

    Article  CAS  Google Scholar 

  • Cho, Y.K., Donohue, T.J., Tejedor, I., Anderson, M.A., McMahon, K.D. and Noguera, D.R. (2008). Development of a solar-powered microbial fuel cell. Journal of Applied Microbiology, 104(3), 640–650.

    Article  CAS  Google Scholar 

  • De Schamphelaire, L. and Verstraete, W. (2009). Revival of the biological sunlight-to-biogas energy conversion system. Biotechnology and Bioengineering, 103(2), 296–304.

    Article  Google Scholar 

  • De Schamphelaire, L., Rabaey, K., Boeckx, P., Boon, N. and Verstraete, W. (2008). Outlook for benefits of sediment microbial fuel cells with two bio-electrodes. Microbial Biotechnology, 1(6), 446–462.

    Article  Google Scholar 

  • Fan, Y., Hu, H., & Liu, H. (2007). Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environmental science & technology, 41(23), 8154–8158.

    Article  CAS  Google Scholar 

  • Fu, C.-C., Hung, T.-C., Wu, W.-T., Wen, T.-C. and Su, C.-H. (2010). Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis. Biochemical Engineering Journal, 52(2–3), 175–180.

    Article  CAS  Google Scholar 

  • Fu, C.-C., Su, C.-H., Hung, T.-C., Hsieh, C.-H., Suryani, D. and Wu, W.-T. (2009). Effects of biomass weight and light intensity on the performance of photosynthetic microbial fuel cells with Spirulina platensis. Bioresource Technology, 100(18), 4183–4186.

    Article  CAS  Google Scholar 

  • Gajda, I., Greenman, J., Melhuish, C. and Ieropoulos, I. (2013). Photosynthetic cathodes for Microbial Fuel Cells. International Journal of Hydrogen Energy, 38(26), 11559–11564.

    Article  CAS  Google Scholar 

  • González del Campo, A., Cañizares, P., Rodrigo, M.A., Fernández, F.J. and Lobato, J. (2013). Microbial fuel cell with an algae-assisted cathode: A preliminary assessment. Journal of Power Sources, 242, 638–645.

    Article  Google Scholar 

  • Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., Beveridge, T.J., Chang, I.S., Kim, B.H., Kim, K.S., Culley, D.E., Reed, S.B., Romine, M.F., Saffarini, D.A., Hill, E.A., Shi, L., Elias, D.A., Kennedy, D.W., Pinchuk, G., Watanabe, K., Ishii, S., Logan, B., Nealson, K.H. and Fredrickson, J.K. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences, 103(30), 11358–11363.

    Article  CAS  Google Scholar 

  • Jeon, H.J., Seo, K., Lee, S.H., Yang, Y.-H., Kumaran, R.S., Kim, S., Hong, S.W., Choi, Y.S. and Kim, H.J. (2012). Production of algal biomass (Chlorella vulgaris) using sediment microbial fuel cells. Bioresource Technology, 109, 308–311.

    Article  CAS  Google Scholar 

  • Jiang, H., Luo, S., Shi, X., Dai, M. and Guo, R. (2013). A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation. Journal of Central South University, 20(2), 488–494.

    Article  CAS  Google Scholar 

  • Jin, J., Yang, L., Chan, S.M.N., Luan, T., Li, Y. and Tam, N.F.Y. (2011). Effect of nutrients on the biodegradation of tributyltin (TBT) by alginate immobilized microalga, Chlorella vulgaris, in natural river water. Journal of Hazardous Materials, 185(2–3), 1582–1586.

    Article  CAS  Google Scholar 

  • J. Nießen, U.S. (2004). Flourinated Polyanilines as Superior Materials for Electrocatalytic Anodes in Bacterial Batteries. Electrochemistry Communications, 6, 571–575.

    Google Scholar 

  • Juang, D.F., Lee, C.H. and Hsueh, S.C. (2012). Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode. Bioresource Technology, 123, 23–29.

    Article  CAS  Google Scholar 

  • Kaku, N., Yonezawa, N., Kodama, Y. and Watanabe, K. (2008). Plant/microbe cooperation for electricity generation in a rice paddy field. Applied Microbiology and Biotechnology, 79(1), 43–49.

    Article  CAS  Google Scholar 

  • Khilari, S., Pandit, S., Ghangrekar, M.M., Das, D. and Pradhan, D. (2013). Graphene supported α-MnO2 nanotubes as a cathode catalyst for improved power generation and wastewater treatment in single-chambered microbial fuel cells. RSC Advances, 3(21), 7902–7911.

    Article  CAS  Google Scholar 

  • Kruzic, A.P. and Kreissl, J.F. (2009). Natural Treatment and On-site Systems. Water Environment Research, 81(10), 1346–1360.

    Article  CAS  Google Scholar 

  • Kumar, K., Roy, S. and Das, D. (2013). Continuous mode of carbon dioxide sequestration by C. sorokiniana and subsequent use of its biomass for hydrogen production by E. cloacae IIT-BT 08. Bioresource Technology, 145, 116–122.

    Article  CAS  Google Scholar 

  • Lakaniemi, A.-M., Tuovinen, O.H. and Puhakka, J.A. (2012a). Anaerobic conversion of microalgal biomass to sustainable energy carriers—A review. Bioresource Technology, 135, 222–231.

    Article  Google Scholar 

  • Lakaniemi, A.-M., Tuovinen, O.H. and Puhakka, J.A. (2012b). Production of Electricity and Butanol from Microalgal Biomass in Microbial Fuel Cells. BioEnergy Research, 5(2), 481–491.

    Article  CAS  Google Scholar 

  • Lan, J.C.-W., Raman, K., Huang, C.-M. and Chang, C.-M. (2013). The impact of monochromatic blue and red LED light upon performance of photo microbial fuel cells (PMFCs) using Chlamydomonas reinhardtii transformation F5 as biocatalyst. Biochemical Engineering Journal, 78, 39–43.

    Article  CAS  Google Scholar 

  • Lin, C.-C., Wei, C.-H., Chen, C.-I., Shieh, C.-J. and Liu, Y.-C. (2013). Characteristics of the photosynthesis microbial fuel cell with a Spirulina platensis biofilm. Bioresource Technology, 135, 640–643.

    Article  CAS  Google Scholar 

  • Lobato, J., González del Campo, A., Fernández, F.J., Cañizares, P. and Rodrigo, M.A. (2013). Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae. Applied Energy, 110, 220–226.

    Article  CAS  Google Scholar 

  • Logan, B.E. (2008). Microbial Fuel Cells. Wiley-Interscience.

    Google Scholar 

  • Malvankar, N.S. and Lovley, D.R. (2012). Microbial Nanowires: A New Paradigm for Biological Electron Transfer and Bioelectronics. ChemSusChem, 5(6), 1039–1046.

    Article  CAS  Google Scholar 

  • Markou, G., Vandamme, D. and Muylaert, K. (2014). Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Research, 65, 186–202.

    Article  CAS  Google Scholar 

  • Melis, A. (2002). Green alga hydrogen production: progress, challenges and prospects. International Journal of Hydrogen Energy, 27(11), 1217–1228.

    Article  CAS  Google Scholar 

  • Nayak, B.K., Pandit, S. and Das, D. (2013). Biohydrogen. In: Kennes, C. and Veiga, ría C. (eds). Air Pollution Prevention and Control. Chapter 15, 345–381. John Wiley & Sons, Ltd.

    Google Scholar 

  • Nishio, K., Hashimoto, K. and Watanabe, K. (2013). Light/electricity conversion by defined cocultures of Chlamydomonas and Geobacter. Journal of Bioscience and Bioengineering, 115(4), 412–417.

    Article  CAS  Google Scholar 

  • Olivieri, G., Salatino, P. and Marzocchella, A. (2014). Advances in photobioreactors for intensive microalgal production: Configurations, operating strategies and applications. Journal of Chemical Technology and Biotechnology, 89(2), 178–195.

    Article  CAS  Google Scholar 

  • Pandit, S., Nayak, B.K. and Das, D. (2012a). Microbial carbon capture cell using cyanobacteria for simultaneous power generation, carbon dioxide sequestration and wastewater treatment. Bioresource technology, 107, 97–102.

    Article  CAS  Google Scholar 

  • Pandit, S., Ghosh, S., Ghangrekar, M.M. and Das, D. (2012b). Performance of an anion exchange membrane in association with cathodic parameters in a dual chamber microbial fuel cell. International Journal of Hydrogen Energy, 37(11), 9383–9392.

    Article  CAS  Google Scholar 

  • Parlevliet, D. and Moheimani, N.R. (2014). Efficient conversion of solar energy to biomass and electricity. Aquatic Biosystems, 10, 4.

    Article  Google Scholar 

  • Popp, J., Lakner, Z., Harangi-Rákos, M. and Fári, M. (2014). The effect of bioenergy expansion: Food, energy, and environment. Renewable and Sustainable Energy Reviews, 32, 559–578.

    Article  Google Scholar 

  • Powell, E.E. and Hill, G.A. (2009). Economic assessment of an integrated bioethanol–biodiesel–microbial fuel cell facility utilizing yeast and photosynthetic algae. Chemical Engineering Research and Design, 87(9), 1340–1348.

    Article  CAS  Google Scholar 

  • Powell, E.E., Mapiour, M.L., Evitts, R.W. and Hill, G.A. (2009). Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Bioresource Technology, 100(1), 269–274.

    Article  CAS  Google Scholar 

  • Rabaey, K., Angenent, L. and Schroder, U. (2009). Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application. IWA Publishing.

    Google Scholar 

  • Raman, K. and Lan, J.C.-W. (2012). Performance and kinetic study of photo microbial fuel cells (PMFCs) with different electrode distances. Applied Energy, 100, 100–105.

    Article  CAS  Google Scholar 

  • Reimers, C.E., Stecher, H.A., Westall, J.C., Alleau, Y., Howell, K.A., Soule, L., White, H.K. and Girguis, P.R. (2007). Substrate Degradation Kinetics, Microbial Diversity, and Current Efficiency of Microbial Fuel Cells Supplied with Marine Plankton. Applied and Environmental Microbiology, 73(21), 7029–7040.

    Article  CAS  Google Scholar 

  • Rodrigo, M.A., Cañizares, P., García, H., Linares, J.J. and Lobato, J. (2009). Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell. Bioresource Technology, 100(20), 4704–4710.

    Article  CAS  Google Scholar 

  • Rosenbaum, M., He, Z. and Angenent, L.T. (2010). Light energy to bioelectricity: photosynthetic microbial fuel cells. Current Opinion in Biotechnology, 21(3), 259–264.

    Article  CAS  Google Scholar 

  • Rosenbaum, M., Zhao, F., Quaas, M., Wulff, H., Schröder, U. and Scholz, F. (2007). Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells. Applied Catalysis B: Environmental, 74(3–4), 261–269.

    Article  CAS  Google Scholar 

  • Rozendal, R.A., Hamelers, H.V.M., Rabaey, K., Keller, J. and Buisman, C.J.N. (2008). Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotechnology, 26(8), 450–459.

    Article  CAS  Google Scholar 

  • Singh, S.P. and Singh, P. (2014). Effect of CO2 concentration on algal growth: A review. Renewable and Sustainable Energy Reviews, 38, 172–179.

    Article  CAS  Google Scholar 

  • Skjånes, K., Lindblad, P. and Muller, J. (2007). BioCO2—A multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomolecular Engineering, 24(4), 405–413.

    Article  Google Scholar 

  • Strik, D.P.B.T.B., Hamelers, H. V.M. and Buisman, C.J.N. (2010). Solar Energy Powered Microbial Fuel Cell with a Reversible Bioelectrode. Environmental Science & Technology, 44(1), 532–537.

    Article  CAS  Google Scholar 

  • Strik, D.P.B.T.B., Terlouw, H., Hamelers, H.V.M. and Buisman, C.J.N. (2008a). Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Applied Microbiology and Biotechnology, 81(4), 659–668.

    Article  CAS  Google Scholar 

  • Strik, D.P.B.T.B., Hamelers (Bert), H.V.M., Snel, J.F.H. and Buisman, C.J.N. (2008b. Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research, 32(9), 870–876.

    Article  CAS  Google Scholar 

  • Velasquez-Orta, S.B., Curtis, T.P. and Logan, B.E. (2009). Energy from algae using microbial fuel cells. Biotechnology and Bioengineering, 103(6), 1068–1076.

    Article  CAS  Google Scholar 

  • Venkata Subhash, G., Chandra, R. and Venkata Mohan, S. (2013). Microalgae mediated bio-electrocatalytic fuel cell facilitates bioelectricity generation through oxygenic photomixotrophic mechanism. Bioresource Technology, 136, 644–653.

    Article  CAS  Google Scholar 

  • Wang, X., Feng, Y., Liu, J., Lee, H., Li, C., Li, N. and Ren, N. (2010). Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosensors and Bioelectronics, 25(12), 2639–2643.

    Article  CAS  Google Scholar 

  • Yagishita, T., Sawayama, S., Tsukahara, K.-I. and Ogi, T. (1998). Performance of photosynthetic electrochemical cells using immobilized Anabaena variabilis M-3 in discharge/culture cycles. Journal of Fermentation and Bioengineering, 85(5), 546–549.

    Article  CAS  Google Scholar 

  • Yagishita, T., Sawayama, S., Tsukahara, K. and Ogi, T. (1999). Effects of glucose addition and light on current outputs in photosynthetic electrochemical cells using Synechocystis sp. PCC6714. Journal of Bioscience and Bioengineering, 88(2), 210–214.

    Article  CAS  Google Scholar 

  • Zhou, M., He, H., Jin, T. and Wang, H. (2012a). Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. Journal of Power Sources, 214, 216–219.

    Article  CAS  Google Scholar 

  • Zhou, M., He, H., Jin, T. and Wang, H. (2012b). Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. Journal of Power Sources, 214, 216–219.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Pandit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Capital Publishing Company

About this chapter

Cite this chapter

Pandit, S., Das, D. (2015). Role of Microalgae in Microbial Fuel Cell. In: Das, D. (eds) Algal Biorefinery: An Integrated Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-22813-6_17

Download citation

Publish with us

Policies and ethics