Skip to main content

Introduction

  • Chapter

Abstract

The primitive earth consisted of an atmosphere filled with CO2 which could not sustain any life forms. The advent of life on earth was possible due to Cyanobacterium and algae. They sequestered the atmospheric CO2 via photosynthesis and in turn released molecular oxygen. This led to a rapid decrease in CO2 levels as a result of which life started evolving on earth. Time has come once again that these humble organisms save us from the threat of global warming. The conversion of solar energy to chemical energy is the major attribute of all photosynthetic organisms including algae. The energy gets stored in the cells as oils, carbohydrates and proteins. The conversion of solar energy to chemical energy largely depends on the photosynthetic efficiency of the organism. Algae are the most photosynthetically efficient organisms on earth which makes them a prospective feedstock for different purposes. The oil production by microalgae is much higher as compared to any other oil crop. Algal biotechnology could provide a plausible solution to many problems ranging from green house gas emission reduction to treatment of wastewater and generation of value added products. Algae are diverse in nature and can be found from unicellular to complex and differentiated levels. They generally inhabit damp surroundings and are abundant in terrestrial as well as freshwater and marine environments. Similar to all photosynthetic organisms, algae require sunlight, carbon dioxide and water for their growth. The affinity of CO2 for microalgae is very high which makes them a prospect for CO2 mitigation. The productivity of oil per acre is the highest in microalgae and it can surpass any other oil crop for biodiesel production. Moreover, it does not require arable land for growth and can be sustained on wastewater (Demirbas A, Energy Educ Sci Technol A 23:1–13, 2009a).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrawal, R., Singh, N.R., Ribeiro, F.H. and Delgass, W.N. (2007). Sustainable fuel for the transportation sector. Proceedings to the National Academy of Sciences USA, 104, 4828–4833.

    Google Scholar 

  • Allard, B., Templier, J. and Largeau, C. (1998). An improved method for the isolation of artifact-free algaenans from microalgae. Organic Geochemistry, 28(9–10), 543–548.

    Article  CAS  Google Scholar 

  • Alves, M.G.d.C.F., Nobre, L.T.D.B., Monteiro, N.d.K.V., Moura, G.E.D.d.D., Dore, C.M.P.G., de Medeiros, V.P. and Leite, E.L. (2012). Effects of heparinoids from algae on hemostasis and their action on the cycle cell. Biomed Prev Nutr. 2, 163–168.

    Google Scholar 

  • Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wrenn, B.A. and Rosa, D.E. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 22, 477–485.

    Article  CAS  Google Scholar 

  • Becker, W. (2007). Microalgae in Human and Animal Nutrition. Handbook of Microalgal Culture: Biotechnology and Applied Phycology (ed A. Richmond), Blackwell Publishing Ltd, Oxford, UK. pp 312–351.

    Google Scholar 

  • Benemann, J.R. and Oswald, W.J. (1996). Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. DOE/PC/93204 – T5.

    Google Scholar 

  • Benli, H. and Durmus, A. (2009). Evaluation of ground-source heat pump combined latent heat storage system performance in greenhouse heating. Energy Building, 41, 220–228.

    Article  Google Scholar 

  • Bermejo Roman, R., Alvarez-Pez, J.M., Acien Fernandez, F.G. and Molina Grima, E. (2002). Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. Journal of Biotechnology, 93(1): 73–85.

    Article  CAS  Google Scholar 

  • Biller, P. and Ross, A.B. (2011). Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol, 102, 215–225.

    Article  CAS  Google Scholar 

  • Boichenko, V.A. and Hoffmann, P. (1994). Photosynthetic hydrogen-production in prokaryotes and eukaryotes—occurrence, mechanism, and functions. Photosynthetica, 30, 527–552.

    CAS  Google Scholar 

  • Brennan, L., & Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and sustainable energy reviews, 14(2), 557–577.

    Article  CAS  Google Scholar 

  • Bunt, J.S. (1961). Nitrogen fixing blue-green algae in Australian soils. Nature, 192, 479–480.

    Article  Google Scholar 

  • Campbell, C.J. (1997). The coming oil crisis. Multi-science Publishing Company and Petroconsultants, S.A Essex.

    Google Scholar 

  • Campbell, M. N. (2008). Biodiesel: algae as a renewable source for liquid fuel. Guelph Engineering Journal, 1(1), 2–7.

    Google Scholar 

  • Cantrell, K.B., Ducey, T., Ro, K.S. and Hunt, P.G. (2008). Livestock waste-to-bioenergy generation opportunities. Bioresour Technol, 99, 7941–7953.

    Article  CAS  Google Scholar 

  • Carlsson, A.S., van Beilen, J.B., Moller, R. and Clayton, D. (2007). Micro- and macro-algae utility for industrial applications. In: Dianna, B. (Ed). Outputs from the EPOBIO project. CPL Press, UK.

    Google Scholar 

  • Carvalho, A.P., Meireles, L.A. and Malcata, F.X. (2006). Microalgal reactors: A review of enclosed system designs and performances. Biotechnol Progress, 22, 1490–1506.

    Article  CAS  Google Scholar 

  • Chakdar, H. and Pabbi, S. (2012). Extraction and purification of phycoerythrin from Anabaena variabilis (CCC421). Phykos., 42(1): 25–31.

    Google Scholar 

  • Chen, P., Min, M., Chen, Y., Wang, L., Li, Y., Chen, Q., Wang, C., Wan, Y., Wang, X., Cheng, Y., Deng, S., Hennessy, K., Lin, X., Liu, Y., Wang, Y., Martinez, B. and Ruan, R. (2009). Review of the biological and engineering aspects of algae to biofuels approach. Int J Agri Biological Eng, 2(4), 1–24.

    Google Scholar 

  • Cheryl (2010). Algae becoming the new biofuel of choice. Available online 2008. http://duelingfuels.com/biofuels/non-food-biofuels/algae-biofuel.php#more-115N.

  • Chiao-Wei, C., Siew-Ling, H. and Ching-Lee, W. (2011). Antibacterial activity of Sargassum polycystum C. Agardh and Padina australis Hauck (Phaeophyceae). African J Biotechnol., 10(64), 14125–14131.

    Google Scholar 

  • Chiellini, E., Cinelli, P., Ilieva, V.I. and Martera, M. (2008). Biodegradable thermoplastic composites based on polyvinyl alcohol and algae. Biomacromolecules, 9(3), 1007–1013.

    Article  CAS  Google Scholar 

  • Chisti, Y. (2006). MICROALGAE AS SUSTAINABLE CELL FACTORIES. Environmental Engineering & Management Journal (EEMJ), 5(3).

    Google Scholar 

  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    Article  CAS  Google Scholar 

  • Chisti, Y. (2008a). Biodiesel from microalgae beats bioethanol. Trends in Biotechnol, 26, 126–131.

    Article  CAS  Google Scholar 

  • Chisti, Y. (2008b). Response to Reijnders: Do biofuels from microalgae beat biofuels from terrestrial plants. Trends in Biotechnol, 26, 351–352.

    Article  CAS  Google Scholar 

  • Chisti, Y. (2010). Fuels from microalgae. Biofuels, 1(2), 233–235.

    Google Scholar 

  • Choi, S.K., Lee, J.Y., Kwon, D.Y. and Cho, K.J. (2006). Settling characteristics of problem algae in the water treatment process. Water Sc Technol, 53, 113–119.

    Article  CAS  Google Scholar 

  • Clarens, A.F., Resurreccion, E., White, M. and Colosi, A. (2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Env Sc Technol, 44, 1813–1819.

    Article  CAS  Google Scholar 

  • Clark, J. and Deswarte, F. (2008). Introduction to chemicals from biomass. Wiley Series in Renewable Resources. ISBN978-0-470-05805.

    Google Scholar 

  • Costa, J.A.V. and Morais, M.G. (2011). The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol, 102, 2–9.

    Article  CAS  Google Scholar 

  • Das, D. (1985). Ph.D. Thesis on “Optimization of methane production from agricultural residues”. IIT Delhi, India.

    Google Scholar 

  • Das, D. (2009). Advances in biological hydrogen production processes: An approach towards commercialization. Int J Hydrogen Energy, 34, 7349–7357.

    Article  CAS  Google Scholar 

  • Das, D. and Veziroğlu, T.N. (2001). Hydrogen production by biological processes: A survey of literature. Int J Hydrogen Energy, 26 (1), 13–28.

    Article  CAS  Google Scholar 

  • Dasgupta, C.N., Gilbert, J.J., Lindblad, P., Heidorn, T., Borgvang, S.A., Skjanes, K. and Das, D. (2010). Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. Int J Hydrogen Energy, 35(19), 10218-10238.

    Article  CAS  Google Scholar 

  • Davis, R., Aden, A. and Pienkos, P.T. (2011). Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy, 88(10), 3524–3531.

    Article  Google Scholar 

  • de Morais, M.G., Stillings, C., Dersch, R., Rudisile, M., Pranke, P., Costa, J.A.V. and Wendorff, J. (2010). Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresour Technol, 101(8), 2872–2876.

    Article  CAS  Google Scholar 

  • De Rosa, S.C., Brenchley, J.M. and Roederer, M. (2003). Beyond six colours: A new era in flow cytometry. Nat Med., 9, 112–117.

    Article  CAS  Google Scholar 

  • deB Richter, Jr, D., Jenkins, J.H., Karakash, J.T., Knight, J., McCreery, L.R. and Nemestothy, K.P. (2009). Wood energy in America. Science, 323, 1432–1433.

    Google Scholar 

  • Del Campo, J. A., Moreno, J., Rodrıguez, H., Vargas, M. A., Rivas, J., & Guerrero, M. G. (2000). Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp.(Chlorophyta). Journal of Biotechnology, 76(1), 51–59.

    Google Scholar 

  • Delrue, F., Setier, P.A., Sahut, C., Cournac, L., Roubaud, A., Peltier, G. and Froment, A.K. (2012). An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour Technol, 111, 191–200.

    Article  CAS  Google Scholar 

  • Demirbas, A.H. (2009a). Inexpensive oil and fats feedstocks for production of biodiesel. Energy Education Sc Technol A, 23, 1–13.

    CAS  Google Scholar 

  • Demirbas, A. (2009b). Production of biodiesel from algae oils. Energy Sources A, 31, 163–168.

    Article  CAS  Google Scholar 

  • Dickinson, J., Jackson, T., Matthews, M. and Cripps, A. (2009). The economic and environmental optimisation of integrating ground source energy systems into buildings. Energy, 34, 2215–2222.

    Article  CAS  Google Scholar 

  • Domozych, D.S., Kort, S., Benton, S. and Yu, T. (2005). The extracellular polymeric substance of the green alga Penium margaritaceum and its role in biofilm formation. Biofilms, 2(2), 129–144.

    Article  Google Scholar 

  • Douskova, I., Doucha, J., Machat, J., Novak, P., Umysova, D., Vitova, M. and Zachleder, V. (2008). Microalgae as a means for converting flue gas CO2 into biomass with a high content of starch. Bioenergy: challenges and opportunities. International conference and exhibition on bioenergy. Guimarães, Portugal, April 6th–9th.

    Google Scholar 

  • Dufossé, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Murthy, K. N. C., & Ravishankar, G. A. (2005). Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality?. Trends in Food Science & Technology, 16(9), 389–406.

    Article  CAS  Google Scholar 

  • Dunahay, T.G., Jarvis, E.E., Dais, S.S. and Roessler, P.G. (1996). Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol, 57–58, 223–231.

    Google Scholar 

  • Finney, K. F., Pomeranz, Y., & Bruinsma, B. L. (1984). Use of algae Dunaliella as a protein supplement in bread. Cereal chemistry (USA).

    Google Scholar 

  • Fleurence, J., Coeur, C.L., Mabeau, S., Maurice, M., & Landrein, A. (1995). Comparison of different extractive procedures for proteins from the edible seaweeds Ulva rigida and Ulva rotundata. Journal of Applied Phycology 7, 577–582.

    Article  CAS  Google Scholar 

  • Franklin, S.E. and Mayfield, S.P. (2005). Recent developments in the production of human therapeutic proteins in eukaryotic algae. Expert Opinion on Biological Therapy, 5(2), 225–235.

    Article  CAS  Google Scholar 

  • Gallagher, B.J. (2011). The economics of producing biodiesel from algae. Renewable Energy, 36, 158–162.

    Article  CAS  Google Scholar 

  • Ghirardi, M.L., Kosourov, S., Tsygankov, A. and Seibert, M. (2000). Two-phase photobiological algal H2-production system. In: Proceedings of the 2000 U.S. DOE hydrogen program review. National Renewable Energy Laboratory, Golden, Colorado, pp 1–13.

    Google Scholar 

  • Glazer, A.N. and Stryer, L. (1984). Phycofluor probes. Trends Biochem Sci. 9, 423–427.

    Article  CAS  Google Scholar 

  • Gong, Y. and Jiang, M. (2011). Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol Letters, 33, 1269–1284.

    Article  CAS  Google Scholar 

  • Greenwell, H.C., Laurens, L.M.L., Shields, R.J., Lovitt, R.W. and Flynn, K.J. (2010). Placing microalgae on the biofuels priority list: A review of the technological challenges. Journal of the Royal Society Interface, 7, 703–726.

    Article  CAS  Google Scholar 

  • Guedes, A.C., Amaro, H.M. and Malcata, F.X. (2011). Microalgae as sources of high added-value compounds: A brief review of recent work. Biotechnol Progress, 27(3), 597–613.

    Article  CAS  Google Scholar 

  • Hankamer, B., Lehr, F., Rupprecht, J., Mussgnug, J.H., Posten, C. and Kruse, O. (2007). Photosynthetic biomass and H2 production by green algae: From bioengineering to bioreactor scale-up. Physiology Plant, 131, 10–21.

    Article  CAS  Google Scholar 

  • Hansel, A. and Lindblad, P. (1998). Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy source. Appl Microbial Biotechnol, 50, 153–160.

    Article  CAS  Google Scholar 

  • Harun, R., Danquah, M.K. and Forde, G.M. (2010b). Microbial biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol, 85, 199–203.

    CAS  Google Scholar 

  • Hempel, F., Bozarth, A.S., Lindenkamp, N., Klingl, A., Zauner, S., Linne, U., Steinbüchel, A. and Maier, U.G. (2011). Microalgae as bioreactors for bioplastic production. Microbial Cell Factories. 10(81), 1–6.

    Google Scholar 

  • Hirano, A., Ryohei, U., Shin, H. and Yasuyuki, O. (1997). CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy, 22, 137–142.

    Article  CAS  Google Scholar 

  • Holdt, S.L., Kraan, S., (2011). Bioactive compounds in seaweed: functional food applications and legislation, J Appl Phycol, 23:543–597.

    Article  CAS  Google Scholar 

  • Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J, 54, 621–639.

    Article  CAS  Google Scholar 

  • Huntley, M.E. and Redalje, D.G. (2007). CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal. Mitigation and Adaption Strategies for Global Change, 12, 573–608.

    Article  Google Scholar 

  • Izydorczyk, K., Tarczynska, M., Jurczak, T., Mrowczynski, J. and Zalewski, M. (2005). Measurement of phycocyanin fluorescence as an online early warning system for cyanobacteria in reservoir intake water. Environ Tox., 20, 425–430.

    Article  CAS  Google Scholar 

  • Janssen, M., Tramper, J., Mur, L. R., & Wijffels, R. H. (2003). Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnology and bioengineering, 81(2), 193–210.

    Article  CAS  Google Scholar 

  • Jespersen, L., Strømdahl, L. D., Olsen, K., & Skibsted, L. H. (2005). Heat and light stability of three natural blue colorants for use in confectionery and beverages. European Food Research and Technology, 220(3–4), 261–266. (Lone et al., 2005)

    Google Scholar 

  • Jha, M.N., Prasad, A.N., Sharma, S.G. and Bharti, R.C. (2001). Effects of fertilization rate and crop rotation on diazotrophic cyanobacteria. World J Microbiol Biotechnol, 17, 463.

    Article  CAS  Google Scholar 

  • Jiang, Y., Chen, F., & Liang, S.Z. (1999). Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Process Biochemistry 34, 633–637.

    Article  CAS  Google Scholar 

  • John, R.P., Anisha, G.S., Nampoothiri, K.M. and Pandey, A. (2011). Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour Technol, 102(1), 186–193.

    Article  CAS  Google Scholar 

  • Kanazawa, K. (2012). High bioavailability and diverse biofunctions of fucoxanthin in brown algae. Nippon Shokuhin Kagaku Kogaku Kaishi, 59(2), 49–55.

    Article  CAS  Google Scholar 

  • Kaushik, B.D. (1995). Cyanobacterial response to salinity and amelioration technology. In: Rice management biotechnology (ed. S. Kannaiyan). pp. 323–329, Associated Publishing Co., New Delhi.

    Google Scholar 

  • Kay, R. A., & Barton, L. L. (1991). Microalgae as food and supplement. Critical reviews in food science & nutrition, 30(6), 555–573.

    Article  CAS  Google Scholar 

  • Khan, S.A., Rashmi Hussain, M.Z., Prasad, S. and Banerjee, U.C. (2009). Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews, 13, 2361–2372.

    Article  CAS  Google Scholar 

  • Khan, Z.U.M., Tahmida Begum, Z.N., Mandal, R. and Hossain, M.Z. (1994). Cyanobacteria in rice soils. World Journal of Microbiology and Biotechnology, 10, 296–298.

    Article  Google Scholar 

  • Kheshgi, H.S., Prince, R.C. and Marland, G. (2000). The potential of biomass fuels in the context of global climate change. Annual Reviews in Energy and Environment, 25, 199–244.

    Article  Google Scholar 

  • Lee, D.H. (2011). Algal biodiesel economy and competition among bio-fuels. Bioresource Technology, 102, 43–49.

    Article  CAS  Google Scholar 

  • Li, Y., Horsman, M., Wu, N., Lan, C.Q. and Dubois-Calero, N. (2008). Biofuels from microalgae. Biotechnology Progress, 24, 815–820.

    CAS  Google Scholar 

  • Lindblad, P., Christensson, K., Lindberg, P., Fedorov, A., Pinto, F. and Tsygankov, A. (2002). Photoproduction of H2 by wildtype Anabaena sp. PCC 7120 and a hydrogen uptake deficient mutant: From laboratory experiments to outdoor culture. Int J Hydrogen Energy, 27, 1271–1281.

    Article  CAS  Google Scholar 

  • Lobban, C.S. and Harrison, P.J. (1997). Seaweed ecology and physiology, IX. Cambridge University Press.

    Google Scholar 

  • Mata, T.M., Martins, A.A. and Caetano, N.S. (2009). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217–232.

    Article  CAS  Google Scholar 

  • Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews, 14(1), 217–232.

    Article  CAS  Google Scholar 

  • Matsumoto, M., Hiroko, Y., Nobukazu, S., Hiroshi, O. and Tadashi, M. (2003). Saccharification of marine microalgae using marine bacteria for ethanol production. Applied Biochemistry and Biotechnology, 105, 247–254.

    Article  Google Scholar 

  • Melis, A. and Happe, T. (2001). Hydrogen production. Green algae as a source of energy. Plant Physiology, 127, 740–748.

    Article  CAS  Google Scholar 

  • Melis, A., Zhang, L., Forestier, M., Ghirardi, M.L. and Seibert, M. (2000). Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiology, 122, 127–136.

    Article  CAS  Google Scholar 

  • Miao, X. and Wu, Q. (2004). High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of Biotechnology, 110, 85–93.

    Article  CAS  Google Scholar 

  • Mihranyan, A., Nyström, G., Razaq, A., Nyholm, L. and Strømme, M. (2010). A battery from algae cellulose. PULPAPER 2010 Conference - Implementing the New Rise: Winning Change. pp. 135–142.

    Google Scholar 

  • Mitra, A.K. (1951). The algal flora of certain Indian soils. Indian Journal of Agricultural Sciences, 21, 375.

    Google Scholar 

  • Molina Grima, E., Fernandez, F. and Camacho, F. (1999). Photobioreactors: Light regime, mass transfer and scale up. Journal of Biotechnology, 70, 231–247.

    Article  CAS  Google Scholar 

  • Munda, I. M. (1977). Differences in amino acid composition of estuarine and marine fucoids. Aquatic Botany, 3, 273–280.

    Article  CAS  Google Scholar 

  • Mussgnug, J.H., Klassen, V., Schlüter, A. and Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150, 51–56.

    Article  CAS  Google Scholar 

  • Ohlrogge, J., Allen, D., Berguson, B., DellaPenna, D., Shachar-Hill, Y. and Stymne, S. (2009). Driving on biomass. Science, 324, 1019–1020.

    Article  CAS  Google Scholar 

  • Okabe, K., Murata, K., Nakanishi, M., Ogi, T., Nurunnabi, M. and Liu, Y. (2009). Fischer–Tropsch synthesis over Ru catalysts by using syngas derived from woody biomass. Catalysis Letters, 128, 171–176.

    Article  CAS  Google Scholar 

  • Ono, E., & Cuello, J. L. (2006). Feasibility assessment of microalgal carbon dioxide sequestration technology with photobioreactor and solar collector. Biosystems engineering, 95(4), 597–606.

    Article  Google Scholar 

  • OriginOil (2010). http://www.originoil.com November 2010.

  • Ozgener, O. and Hepbasil, A. (2007). A review on the energy and exergy analysis of solar assisted heat pump systems. Renewable and Sustainable Energy Reviews, 11, 482–496.

    Article  CAS  Google Scholar 

  • Park, J.B.K., Craggs, R.J. and Shilton, A.N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102, 35–42.

    Article  CAS  Google Scholar 

  • Pienkos, P.T. and Darzins, A. (2009). The promise and challenges of micro-algal derived biofuels. Biofuels Bioproducts and Biorefineries, 3, 431–440.

    Article  CAS  Google Scholar 

  • Poulíčková, A., Špačková, J., Kelly, M. G., Duchoslav, M., & Mann, D. G. (2008). Ecological variation within Sellaphora species complexes (Bacillariophyceae): specialists or generalists?. Hydrobiologia, 614(1), 373–386.

    Article  Google Scholar 

  • Proviron (2010). http://www.proviron.com/algae.

  • Pulz, O. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65, 635–648.

    Article  CAS  Google Scholar 

  • Ran, C.Q., Chen, Z.A., Zhang, W., Yu, X.J. and Jin, M.F. (2006). Characterization of photobiological hydrogen production by several marine green algae. Wuhan Ligong Daxue Xuebao, 28(suppl 2), 258–263.

    Google Scholar 

  • Rao, K.K. and Hall, D.O. (1996). Hydrogen production by cyanobacteria: Potential, problems and prospects. Journal of Marine Biotechnology, 4, 10–15.

    CAS  Google Scholar 

  • Reijnders, L. (2009). Microalgal and terrestrial transport biofuels to displace fossil fuels. Energies, 2(1), 48–56.

    Article  CAS  Google Scholar 

  • Reijnders, L. and Huijbregts, M.A.J. (2009). Energy Balance: Cumulative fossil fuel demand and solar energy conversion efficiency of transport biofuels. In: Transport biofuels: A seed to wheel perspective. Springer, London. pp. 49–74.

    Google Scholar 

  • Rodolfi, L., Zitelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G. and Tredici, M.R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102, 100–112.

    Article  CAS  Google Scholar 

  • Rodjaroen, S., Juntawong, N., Mahakhant, A., & Miyamoto, K. (2007). High biomass production and starch accumulation in native green algal strains and cyanobacterial strains of Thailand. Kasetsart J (Nat Sci), 41, 570–5.

    Google Scholar 

  • Roger, P.A., Zimmerman, W.J. and Lumpkin, T.A. (1993). Microbiological management of wetland rice fields. In: Soil Microbiological Ecology—Application in Agricultural and Microbiological Management (ed. B. Metting). Marcel Dekker, New York. pp. 417–455.

    Google Scholar 

  • Rosales-Mendoza, S., Paz-Maldonado, L.M.T. and Soria-Guerra, R.E. (2012). Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: Current status and perspectives. Plant Cell Reports, 31(3), 479–494.

    Article  CAS  Google Scholar 

  • Rosenberg, J.N., Oyler, G.A., Wilkinson, L. and Betenbaugh, M.J. (2008). A green light for engineered algae: Redirecting metabolism to fuel a biotechnology revolution. Biotechnology, 19, 430–436.

    CAS  Google Scholar 

  • Rother, J.A. and Whitton, B.A. (1989). Nitrogenase activity of blue green algae on seasonally flooded soils in Bangladesh. Plant Soil, 113, 47–52.

    Article  Google Scholar 

  • Ruperez, P. (2002). Mineral content of edible marine seaweeds. Food Chemistry 79: 23–26.

    Article  CAS  Google Scholar 

  • Santana, G. C. S., Martins, P. F., Da Silva, N. D. L., Batistella, C. B., Maciel Filho, R., & Maciel, M. W. (2010). Simulation and cost estimate for biodiesel production using castor oil. Chemical Engineering Research and Design, 88(5), 626–632.

    Article  CAS  Google Scholar 

  • Schenk, P.M., Skye, R., Thomas-Hall, Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O. and Hankamer, B. (2008). Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Research, 1, 20–43.

    Google Scholar 

  • Schütz, K., Happe, T., Troshina, O., Lindblad, P., Leitão, E., Oliveira, P. and Tamagnini, P. (2004). Cyanobacterial H2-production—A comparative analysis. Planta, 218, 350–359.

    Article  CAS  Google Scholar 

  • Sharma, S., Hunt, R., Cao, J. and Zeller, M.A. (2011). Bioplastics from algae biomass (Conference Paper) Society of Plastics Engineers—Global Plastics Environmental Conference 2011.

    Google Scholar 

  • Sheehan, J., Dunahay, T., Benemann, J. and Roessler, P. (1998). A Look Back at the U.S. Department of Energy’s Aquatic Species Program–Biodiesel from Algae. Edited by: DOE: National Renewable Energy Laboratory.

    Google Scholar 

  • Sheng, G., Schluchter, W. M., & Bryant, D. A. (2008). Biogenesis of Phycobiliproteins I. cpcS-I AND cpcU mutants of the cyanobacterium Synechococcus sp. PCC 7002 define a heterodimeric phyococyanobilin lyase specific for β-phycocyanin and allophycocyanin subunits. Journal of Biological Chemistry, 283(12), 7503–7512.

    Article  CAS  Google Scholar 

  • Sialve, B., Bernet, N. and Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27, 409–416.

    Article  CAS  Google Scholar 

  • Singh, A., Nigam, P.S. and Murphy, J.D. (2011). Renewable fuels from algae: An answer to debatable land based fuels. Bioresource Technology, 102, 10–16.

    Article  CAS  Google Scholar 

  • Skjånes, K., Rebours, C. and Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol., 33(2), 172–215.

    Article  CAS  Google Scholar 

  • Sode, K.J., Horikoshi, K., Takeyama, J., Nakamura, N. and Matsunga, T. (1991). On line monitoring of marine cyanobacterial cultivation based on phycocyanin fluorescence. J Biotechnol., 21, 209–218.

    Article  CAS  Google Scholar 

  • Solix_Biofuels (2010). http://www.solixbiofuels.com.

  • Soltani, S., Saadatmand, S., Khavarinejad, R. and Nejadsattari, T. (2011). Antioxidant and antibacterial activities of Cladophora glomerata (L.) Kütz. in Caspian Sea Coast, Iran. Afri J Biotechnol., 10(39), 7684–7689.

    Google Scholar 

  • Spolaore, P., Cassan, C.J., Duran, E. and Isambert, A. (2006). Commercial Applications of Microalgae. J Bioscience and Bioeng, 101, 87–96.

    Article  CAS  Google Scholar 

  • Srinivasan, S. (1978). Algae multiplication fertilizer practices. International Rice Research Newsletter, 1 l(4), 35–36.

    Google Scholar 

  • Subhadra, B. and Edwards, M. (2010). An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy, 38, 4897–4902.

    Article  CAS  Google Scholar 

  • Subitec (2010). http://www.subitec.com.

  • Tamagnini, P., Leitão, E., Oliveira, P., Ferreira, D., Pinto, F., Harris, D. and Heidorn, T. (2007). Cyanobacterial hydrogenases. Diversity, Regulation and Applications. FEMS Microbiology Reviews, 31, 692–720.

    Article  CAS  Google Scholar 

  • Taylor, G. (2008). Biofuels and the biorefinery concept. Energy policy, 36(12), 4406–4409.

    Article  Google Scholar 

  • Telford, W.G., Moss, M.W., Moreseman, J.P. and Thomas Allnutt, F.C. (2001). Cyanobacterial stabilized phycobilisomes as fluorochromes for extracellular antigen detection by flow cytometry. J Immunol Meth., 254, 13–30.

    Article  CAS  Google Scholar 

  • Tirol, A.C., Roger, P.A. and Watanabe, I. (1982). Fate of nitrogen from blue green alga in a flooded rice soil. Soil Science and Plant Nutrition, 28, 559–569.

    Article  CAS  Google Scholar 

  • Tokusoglu, O., & Unal, M.K. (2003). Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Sciences 68, 1144–1148.

    Article  CAS  Google Scholar 

  • Törnwall, M. E., Virtamo, J., Korhonen, P. A., Virtanen, M. J., Taylor, P. R., Albanes, D., & Huttunen, J. K. (2004). Effect of α-tocopherol and β-carotene supplementation on coronary heart disease during the 6-year post-trial follow-up in the ATBC study. European heart journal, 25(13), 1171–1178.

    Article  CAS  Google Scholar 

  • Tran, M. et al. (2009). Synthesis and Assembly of a Full-Length Human Monoclonal Antibody in Algal Chloroplasts. Biotechnol Bioeng., 104, 663–673.

    CAS  Google Scholar 

  • Ueda, R., Hirayama, S., Sugata, K. and Nakayama, H. (1996). Process for the production of ethanol from microalgae. US Patent 5,578,472.

    Google Scholar 

  • Usov, A.I. (2011). Polysaccharides of the red algae. Advances in Carbohydrate Chemistry and Biochemistry, 65, 115–217.

    Article  CAS  Google Scholar 

  • Varfolomeev, S. D., Efremenko, E. N., & Krylova, L. P. (2010). Biofuels. Russian Chemical Reviews, 79(6), 491.

    Google Scholar 

  • van Beilen, J.B. (2010). Why microalgal biofuels won’t save the internal combustion machine. Biofuels Bioproducts Biorefineries, 4, 41–52.

    Article  CAS  Google Scholar 

  • van Harmelen, T. and Oonk, H. (2006). Microalgae biofixation processes: Applications and potential contributions to greenhouse gas mitigation options. TNO Built Environmental Geosciences, Apeldoorn.

    Google Scholar 

  • van Haveren, J., Scott, E. L., & Sanders, J. (2008). Bulk chemicals from biomass. Biofuels, Bioproducts and Biorefining, 2(1), 41–57.

    Article  CAS  Google Scholar 

  • Venkataraman, G.S. (1979). Algal inoculation in rice fields. In: Nitrogen and rice. International Rice Research Institute, Los Banos, Philippines. Pp 312–321.

    Google Scholar 

  • Villar, R., Laguna, M. R., Calleja, J. M., & Cadavid, I. (1992). Effects of Phaeodactylum tricornutum and Dunaliella tertiolecta extracts on the central nervous system. Planta medica, 58(5), 405–409.

    Article  CAS  Google Scholar 

  • Watanabe, A., & Yamamoto, Y. (1971). Algal nitrogen fixation in the tropics. Plant and Soil, 35(1), 403–413.

    Google Scholar 

  • Wang, B., Li, Wu, N. and Lan, C.Q. (2008). CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79, 707–718.

    Google Scholar 

  • WI (Worldwatch Institute) (2007). Biofuels for Transport: Global Potential and Implications for Energy and Agriculture. Earthscan, London.

    Google Scholar 

  • Wiencke, C. and Bischof, K. (eds) (2012). Seaweed Biology. Novel insights into ecophysiology, ecology and utilization. Ecological Studies Vol 219, Springer Publishers.

    Google Scholar 

  • Willems, P. A. (2009). The biofuels landscape through the lens of industrial chemistry. Science, 325(5941), 707–708

    Article  CAS  Google Scholar 

  • Yamaguchi, K., 1997. Recent advances in microalgal bio-science in Japan, with special reference to utilization of biomass and metabolites: a review. J. appl. Phycol. 8: 487–502.

    Article  Google Scholar 

  • Yang, Z., Guo, R., Xu, X., Fan, Xa. and Li, X. (2010). Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. International Journal of Hydrogen Energy, 35, 9618–9623.

    Article  CAS  Google Scholar 

  • Yu, W. L., Ansari, W., Schoepp, N. G., Hannon, M. J., Mayfield, S. P., & Burkart, M. D. (2011). Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae. Microb Cell Fact, 10(11).

    Google Scholar 

  • Zittelli G C, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici MR 1999. Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotechnol 70:299–312.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Capital Publishing Company

About this chapter

Cite this chapter

Das, D. (2015). Introduction. In: Das, D. (eds) Algal Biorefinery: An Integrated Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-22813-6_1

Download citation

Publish with us

Policies and ethics