Skip to main content

Environmental Convergence

  • Chapter
  • First Online:
Dynamic Paleontology

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 988 Accesses

Abstract

Why do characteristic features of the Proterozoic sea floor reappear in Mesozoic lake strata? The reappearance is a case of environmental convergence, where very similar environmental/ecological settings appear at widely separated moments in geological time. In this and other cases, non symmetry in the fossilized biofilms is key to recognition of ancient organo sedimentary structures. These can appear at any time or in any place when aquatic conditions permit.

The huge iguanodon might reappear in the woods, and the ichthyosaur in the sea, while the pterodactyl might flit again through the umbrageous groves of tree ferns.

Charles Lyell (1797–1875)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balsam WC, Volgel S (1973) Water movement in archaeocyathids: evidence and implication of passive flow in models. J Paleont 47:979–984

    Google Scholar 

  • Bertrand-Sarfati J, Milandou R (1989) Méchanisms de croissance des stromatolites géants infralittoraux, Protérozoïque supérieur du Congo. Bull Soc géol France 5(6):1185–1192

    Google Scholar 

  • Bryant ID, Pickerill RK (1990) Lower Cambrian trace fossils from the Buen Formation of central North Greenland: preliminary observations. Rapport Grønlands Geologiske Undersøgelese 147:44–62

    Google Scholar 

  • Buchy M-C et al (2007) First occurrence of the genus Dakosaurus (Crocodyliformes, Thalattosuchia) in the late Jurassic of Mexico. Bull Soc géol France 178(5):391–397

    Article  Google Scholar 

  • Caron J-B et al (2013) Beyond the Burgess Shale: Cambrian microfossils track the rise and fall of hallucigeniid lobopodians. Proc Royal Soc B. doi:10.1098/rspb.2013.1613

    Google Scholar 

  • Clapham ME et al (2003) Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology 29:527–544

    Article  Google Scholar 

  • Clapham ME, Narbonne GM (2002) Ediacaran epifaunal tiering. Geology 30:710–716

    Article  Google Scholar 

  • Cloud P (1983) Cosmobiology. Quart Rev. Biology 58:57–60

    Google Scholar 

  • Cloud P et al (1974) Giant stromatolites and associated vertical tubes from the Upper Proterozoic Noonday Dolomite, Death Valley Region, Eastern California. Bull Geol Soc Am 85:1869–1882

    Article  Google Scholar 

  • Conway Morris S (2003) Life’s solution: inevitable humans in a lonely universe. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dick JTA (1995) The cannibalistic behavior of two Gammarus species (Crustacea: Amphipoda). J Zool 236(4):697–706

    Article  Google Scholar 

  • Droser ML et al (2002) Trace fossils and substrates of the terminal Proterozoic Cambrian transition: implications for the record of early bilaterians and sediment mixing. Proc Nat Acad Sci 99(20):12572–12576

    Article  Google Scholar 

  • Erwin DH (2008) Macroevolution of ecosystem engineering, niche construction and diversity. Trends Ecol Evol 23(6):304–310

    Article  Google Scholar 

  • Forsey GF (2013) Fossil evidence for the escalation and origin of marine mutualisms. J Nat Hist 47(25–28):1833–1864

    Article  Google Scholar 

  • Gehling JG (2004) Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios 14(1):40–57

    Article  Google Scholar 

  • Gehling JG et al (2001) Burrowing below the basal Cambrian GSSP, Fortune Head. Newfoundland. Geol Mag 138(2):213–218

    Google Scholar 

  • Gehling JG et al (2003) The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology 43(3):427–456

    Article  Google Scholar 

  • Iniesto M et al (2015) The impact of microbial mats and their microenvironmental conditions in early decay of fish. Palaios 30(11):792–801

    Article  Google Scholar 

  • Jones CG et al (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Jones CG et al (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957

    Article  Google Scholar 

  • McMenamin MAS (1998) The garden of Ediacara: discovering the first complex life. Columbia Univ Press, New York

    Google Scholar 

  • McMenamin MAS (2005) Microbial influence and environmental convergence in marine (Proterozoic) and lacustrine (Jurassic) depositional settings. Geol Soc America Abstr Prog 37(1):7

    Google Scholar 

  • McMenamin MAS, Schulte McMenamin D (1990) The emergence of animals: the Cambrian breakthrough. Columbia Univ Press, New York

    Google Scholar 

  • McMenamin MAS, Schulte McMenamin D (1994) Hypersea and the Land Ecosystem. BioSystems 31:145–153

    Article  Google Scholar 

  • Olsen P (1985) Constraints on the formation of lacustrine microlaminated sediments. U S Geol Surv Circ 946:34–35

    Google Scholar 

  • Rahman IA et al (2015) Suspension feeding in the enigmatic Ediacaran organism Tribrachidium demonstrates complexity of Neoproterozoic ecosystems. Sci Adv 1:e1500800

    Article  Google Scholar 

  • Seilacher A (1999) Biomat related lifestyle in the Precambrian. Palaios 14(1):86–93

    Article  Google Scholar 

  • Singer A et al (2012) Experimental fluid dynamics of an Ediacaran frond. Palaeo Electronica 15:1–14

    Google Scholar 

  • Young P (1981) Thick layers of life blanket lake bottoms in Antarctica valleys. Smithsonian Mag 12(8):52–61

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. S. McMenamin .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McMenamin, M.A.S. (2016). Environmental Convergence. In: Dynamic Paleontology. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-22777-1_4

Download citation

Publish with us

Policies and ethics