Need for Touch in Human Space Exploration: Towards the Design of a Morphing Haptic Glove – ExoSkin

  • Sue Ann Seah
  • Marianna Obrist
  • Anne Roudaut
  • Sriram Subramanian
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9299)


The spacesuit, particularly the spacesuit glove, creates a barrier between astronauts and their environment. Motivated by the vision of facilitating full-body immersion for effortless space exploration, it is necessary to understand the sensory needs of astronauts during extra-vehicular activities (EVAs). In this paper, we present the outcomes from a two-week field study performed at the Mars Desert Research Station, a facility where crews carry out Mars-simulated missions. We used a combination of methods (a haptic logbook, technology probes, and interviews) to investigate user needs for haptic feedback in EVAs in order to inform the design of a haptic glove. Our results contradict the common belief that a haptic technology should always convey as much information as possible, but should rather offer a controllable transfer. Based on these findings, we identified two main design requirements to enhance haptic feedback through the glove: (i) transfer of the shape and pressure features of haptic information and (ii) control of the amount of haptic information. We present the implementation of these design requirements in the form of the concept and first prototype of ExoSkin. ExoSkin is a morphing haptic feedback layer that augments spacesuit gloves by controlling the transfer of haptic information from the outside world onto the astronauts’ skin.


Space Touch Haptic feedback Haptic glove User experience Extra-vehicular activities Haptic jamming Field study Technology probes 



The authors thank all members of MarsCrew134 for participating in the field study and for some of the photos and videos. This work was supported by the EC within the 7th framework programme through the FET Open scheme for the GHOST project (Grant Agreement 309191) and within the Horizon2020 programme through the ERC (Starting Grant Agreement 638605).


  1. 1.
    Adams, R.J. et al.: Glove-enabled computer operations (GECO): design and testing of an EVA glove adapted for human-computer interface. In: 42nd AIAA ICES, pp. 1–23 (2013)Google Scholar
  2. 2.
    Benali-Khoudja, M., Hafez, M., Alexandre, J.M., Kheddar, A.: Tactile interfaces: a state-of-the-art survey. In: 35th International Symposium on Robotics, pp. 721–726 (2004)Google Scholar
  3. 3.
    Bishu, R.R., Klute, G.: The effects of extra vehicular activity (EVA) gloves on human performance. Int. J. Ind. Ergonomics 16(3), 165–174 (1995)CrossRefGoogle Scholar
  4. 4.
    Carton, A., Dunne, L.E.: Tactile distance feedback for firefighters: design and preliminary evaluation of a sensory augmentation glove. In: Proceedings of the 4th Augmented Human International Conference, pp. 58–64 (2013)Google Scholar
  5. 5.
  6. 6.
    Dipietro, L., Sabatini, A.M., Dario, P.: A survey of glove-based systems and their applications. IEEE Trans. Syst. Man. Cybern. C Appl. Rev. 38(4), 461–482 (2008)CrossRefGoogle Scholar
  7. 7.
    Favetto, A., Chen, F.C., Ambrosio, E.P., Manfredi, D., Calafiore, G.C.: Towards a hand exoskeleton for a smart EVA glove. In: IEEE ROBIO, pp. 1293–1298 (2010)Google Scholar
  8. 8.
    Follmer, S., Leithinger, D., Olwal, A., Cheng, N., Ishii, H.: Jamming user interfaces: programmable particle stiffness and sensing for malleable and shape-changing devices. In: 25th UIST, pp. 519–528 (2010)Google Scholar
  9. 9.
    Garcia-Hernandez, N., Tsagarakis, N.G., Caldwell, D.G.: Feeling through tactile displays: a study on the effect of the array density and size on the discrimination of tactile patterns. IEEE Trans. Haptics 4(2), 100–110 (2011)CrossRefGoogle Scholar
  10. 10.
    Hayward, V., Cruz-Hernandez, M.: Tactile display device using distributed lateral skin stretch. In: Proceedings Haptics Interfaces for Virtual Environment and Teleoperator Systems Symposium, pp. 1309–1314 (2000)Google Scholar
  11. 11.
    Hoffman, S.J.: Advanced EVA Capabilities: a study for NASA’s revolutionary aerospace systems concept Programs. NASA/TP—2004–212068 (2004)Google Scholar
  12. 12.
    Holschuh, B., Obropta, E., Buechley, L., Newman, D.: Materials and textile architecture analyses for mechanical counter-pressure space suits using active materials. In: AIAA SPACE Conference and Exposition (2012)Google Scholar
  13. 13.
    Hovland, S.: ESA human lunar architecture activities. In: International Lunar Conference (2005)Google Scholar
  14. 14.
    Hutchinson, H., et al.: Technology probes: inspiring design for and with families. In: CHI, pp. 17–24 (2003)Google Scholar
  15. 15.
    Kennedy, K.J., Toups, L.D., Rudisill, M.: Constellation architecture team–lunar scenario 12.0 habitation overview. In: Earth and Space, pp. 989–1011 (2010)Google Scholar
  16. 16.
    Kikuuwe, R., Sano, A., Mochiyama, H., Takesue, N., Fujimoto, H.: Enhancing haptic detection of surface undulation. ACM Trans. Appl. Percept. 2(1), 46–67 (2005)CrossRefGoogle Scholar
  17. 17.
    Killebrew, J.H., Bensmaia, S.J., Dammann, J.F., Denchev, P., Hsiao, S.S., Craig, J.C., Johnson, K.O.: A dense array stimulator to generate arbitrary spatio-temporal tactile stimuli. J. Neurosci. Methods 161(1), 62–74 (2007)CrossRefGoogle Scholar
  18. 18.
    Kostakos, V.: The challenges and opportunities of designing pervasive systems for deep-space colonies. Pers. Ubiquit. Comput. 15(5), 479–486 (2011)CrossRefGoogle Scholar
  19. 19.
    Lévesque, V., Hayward, V.: Tactile graphics rendering using three laterotactile drawing primitives. In: Haptics Symposium (HAPTICS), pp. 429–436 (2008)Google Scholar
  20. 20.
    Lévesque, V., Pasquero, J., Hayward, V., Legault, M.: Display of virtual braille dots by lateral skin deformation: feasibility study. ACM Trans. Appl. Perct. 2(2), 132–149 (2005)CrossRefGoogle Scholar
  21. 21.
    Martínez, J., Garcíıa, A.S., Martínez, D., Molina, J.P., González, P.: Texture recognition: evaluating force, vibrotactile and real feedback. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part IV. LNCS, vol. 6949, pp. 612–615. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Martínez, J., García, A., Oliver, M., Molina Masso, J., González, P.: Identifying 3D geometric shapes with a vibrotactile glove. In: IEEE CGA, p. 99 (2014)Google Scholar
  23. 23.
    Nakatani, M., Kawakami, N., Tachi, S.: How human can discriminate between convex and concave shape from the tactile stimulus. In: Annual Conference Cognitive Science (2007)Google Scholar
  24. 24.
    Newman, D.J., Canina, M., Trotti, G.L.: Revolutionary design for astronaut exploration - beyond the bio-suit system. Proc. STAIF 880(1), 975–986 (2007)Google Scholar
  25. 25.
    Ou, J., Yao, L., Tauber, D., Steimle, J., Niiyama, R., Ishii, H.: jamSheets: thin interfaces with tunable stiffness enabled by layer jamming. In: Proceedings of the TEI, pp. 65–72 (2014)Google Scholar
  26. 26.
    Pitts, B., Brensinger, C., Saleh, J., Carr, C., Schmidt, P., Newman, D.: Astronaut bio-suit for exploration class missions. NIAC Phase I Final report, MIT, Cambridge (2001)Google Scholar
  27. 27.
    Portree, D.S. Humans to Mars: Fifty Years of Mission Planning, 1950–2000. NASA/SP-2001-4521 (2001)Google Scholar
  28. 28.
    Purves, L.R.: Use of a lunar outpost for developing space settlement technologies. In: Proceedings of the AIAA Space (2008)Google Scholar
  29. 29.
    Robles-De-La-Torre, G., Hayward, V.: Force can overcome object geometry in the perception of shape through active touch. Nature 412(6845), 445–448 (2001)CrossRefGoogle Scholar
  30. 30.
    Saldana, J.: The Coding Manual for Qualitative Researchers. SAGE Publications, Thousand Oaks (2012)Google Scholar
  31. 31.
    Shimojo, M., Shinohara, M., Fukui, Y.: Human shape recognition performance for 3d tactile display. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 29(6), 637–644 (1999)CrossRefGoogle Scholar
  32. 32.
    Stone, R.J.: Haptic feedback: a brief history from telepresence to virtual reality. In: Brewster, S., Murray-Smith, R. (eds.) Haptic HCI. LNCS, vol. 2058, pp. 1–16. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  33. 33.
    Thomas, K.S., McMann, H.J.: US Spacesuits. Springer, Heidelberg (2011)Google Scholar
  34. 34.
    Thompson, S., Mesloh, M., England, S., Benson, E., Rajulu, S.: The effects of extravehicular activity (EVA) glove pressure on tactility. In: Proceedings of the Human Factors and Ergonomics Society, vol. 55, issue 1, pp. 1385–1388 (2001)Google Scholar
  35. 35.
    Webb, P., Cole, C., Hargens, A.: The elastic space suit: its time has come. In: Proceedings of the ICES (2011)Google Scholar
  36. 36.
    Yamada, Y., et al.: Proposal of a SkilMate hand and its component technologies for extravehicular activity gloves. Adv. Robot. 18(3), 269–284 (2004)CrossRefGoogle Scholar
  37. 37.
    Young, D., Newman, D.: Augmenting exploration: aerospace, earth and self. In: Bonfiglio, A., De Rossi, D. (eds.) Wearable Monitoring Systems, pp. 221–249. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Sue Ann Seah
    • 1
  • Marianna Obrist
    • 2
  • Anne Roudaut
    • 1
  • Sriram Subramanian
    • 1
  1. 1.Department of Computer ScienceUniversity of BristolBristolUK
  2. 2.School of Engineering and InformaticsUniversity of SussexBrightonUK

Personalised recommendations