Human-Computer Interaction

INTERACT 2015: Human-Computer Interaction – INTERACT 2015 pp 165-172 | Cite as

Touch, Movement and Vibration: User Perception of Vibrotactile Feedback for Touch and Mid-Air Gestures

  • Christian Schönauer
  • Annette Mossel
  • Ionuț-Alexandru Zaiți
  • Radu-Daniel Vatavu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9299)

Abstract

Designing appropriate feedback for gesture interfaces is an important aspect of user experience and performance. We conduct the first investigation of users’ perceptions of vibrotactile stimuli during touch and mid-air gesture input for smart devices. Furthermore, we explore perception of feedback that is decoupled from the smart device and delivered outside its operating range by an accessory wearable, i.e., feedback delivered at arm-level. Results show user perception of vibrotactile stimuli up to 80 % accurate, which we use to recommend guidelines for practitioners to design new vibrotactile feedback techniques for smart devices.

Keywords

Gestures Vibrotactile feedback User perception Mid-air gestures Touch Wearable Design guidelines Smartphone Actuators Interface design 

References

  1. 1.
    Adams, R.J., Olowin, A.B., Hannaford, B., Sands, O.S.: Tactile data entry for extravehicular activity. In: Proceedings of 2011 IEEE World Haptics, pp. 305–310 (2011)Google Scholar
  2. 2.
    Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., Leung, V.C.M.: Body area networks: a survey. Mobile Netw. Appl. 16(2), 171–193 (2011)CrossRefMATHGoogle Scholar
  3. 3.
    Van Erp, J.B.F.: Guidelines for the use of vibro-tactile displays in human computer interaction. In: Proceedings of Eurohaptics, pp. 18–22 (2002)Google Scholar
  4. 4.
    Geldard, F.A.: Sensory Saltation: Metastability in the Perceptual World. Wiley, New York (1975)MATHGoogle Scholar
  5. 5.
    Grandhi, S.A, Joue, G., Borchers, J., Mittelberg, I.: How we gesture towards machines: an exploratory study of user perceptions of gestural interaction. In: Proceedings of CHI 2013 Extended Abstracts, pp. 1209–1214. ACM Press (2013)Google Scholar
  6. 6.
    Israr, A., Poupyrev, I.: Tactile brush: drawing on skin with a tactile grid display. In: Proceedings of CHI 2011, pp. 2019–2028. ACM Press (2011)Google Scholar
  7. 7.
    Kamal, A., Li, Y., Lank, E.: Teaching motion gestures via recognizer feedback. In: Proceedings of IUI 2014, pp. 73–82. ACM Press (2014)Google Scholar
  8. 8.
    Kratz, S., Ballagas, R.: Unravelling seams: improving mobile gesture recognition with visual feedback techniques. In: Proceedins of CHI 2009, pp. 937–940. ACM (2009)Google Scholar
  9. 9.
    Lieberman, J., Breazeal, C.: TIKL: development of a wearable vibrotactile feedback suit for improved human motor learning. IEEE Trans. Robotics 23(5), 919–926 (2007)CrossRefGoogle Scholar
  10. 10.
    McDaniel, T., Villanueva, D., Krishna, S., Panchanathan, S.: MOVeMENT: A framework for systematically mapping vibrotactile stimulations to fundamental body movements. In: Proceedings of the 2010 IEEE International Symposium on Haptic Audio-Visual Environments and Games, pp. 1–6 (2010)Google Scholar
  11. 11.
    Spelmezan, D., Jacobs, M., Hilgers, A., Borchers, J.: Tactile motion instructions for physical activities. In: Proceedings of CHI 2009. ACM Press, 2243–2252 (2009)Google Scholar
  12. 12.
    Wulf, G.: Attention and motor skill learning. Human Kinetics (2007)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Christian Schönauer
    • 1
  • Annette Mossel
    • 1
  • Ionuț-Alexandru Zaiți
    • 2
  • Radu-Daniel Vatavu
    • 2
  1. 1.Vienna University of TechnologyViennaAustria
  2. 2.University Stefan Cel Mare of SuceavaSuceavaRomania

Personalised recommendations