Molecular Modeling and Its Applications in Protein Engineering

  • Emel Timucin
  • O. Ugur Sezerman


Protein engineering is the field of study aiming to alter proteins to a desired state that may be useful in applications ranging from medicine to industry. In protein engineering it is of interest to predict amino acid substitutions that are critical to the desired feature. Molecular modeling tools have been extensively used for this purpose. Herein, the focus is on such molecular modeling tools for design of new proteins with improved functions and stabilities. The most widely used molecular modeling tools are described and their applications are exemplified.


Molecular Dynamic Simulation Free Energy Change Protein Engineering Free Energy Calculation Steer Molecular Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alder BJ, Wainwright TE (1957) Phase transition for a hard sphere system. J Chem Phys 27(5):1208–1209. doi: 10.1063/1.1743957 CrossRefGoogle Scholar
  2. Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. I. General method. J Chem Phys 31(2):459–466. doi: 10.1063/1.1730376 CrossRefGoogle Scholar
  3. Andric P, Meyer AS, Jensen PA, Dam-Johansen K (2010) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol Adv 28(3):308–324. doi: 10.1016/j.biotechadv.2010.01.003 CrossRefPubMedGoogle Scholar
  4. Andrusier N, Mashiach E, Nussinov R, Wolfson HJ (2008) Principles of flexible protein-protein docking. Proteins 73(2):271–289. doi: 10.1002/prot.22170 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bastug T, Kuyucak S (2006) Energetics of ion permeation, rejection, binding, and block in gramicidin A from free energy simulations. Biophys J 90(11):3941–3950. doi: 10.1529/biophysj.105.074633 PubMedCentralCrossRefPubMedGoogle Scholar
  6. Bastug T, Kuyucak S (2007a) Application of Jarzynski’s equality in simple versus complex systems. Chem Phys Lett 436:383–388CrossRefGoogle Scholar
  7. Bastug T, Kuyucak S (2007b) Free energy simulations of single and double ion occupancy in gramicidin A. J Chem Phys 126(10):105103. doi: 10.1063/1.2710267 CrossRefPubMedGoogle Scholar
  8. Bastug T, Chen PC, Patra SM, Kuyucak S (2008) Potential of mean force calculations of ligand binding to ion channels from Jarzynski’s equality and umbrella sampling. J Chem Phys 128(15):155104. doi: 10.1063/1.2904461 CrossRefPubMedGoogle Scholar
  9. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112(3):535–542CrossRefPubMedGoogle Scholar
  10. Bill RM, Henderson PJ, Iwata S, Kunji ER, Michel H, Neutze R, Newstead S, Poolman B, Tate CG, Vogel H (2011) Overcoming barriers to membrane protein structure determination. Nat Biotechnol 29(4):335–340. doi: 10.1038/nbt.1833 CrossRefPubMedGoogle Scholar
  11. Bonneau R, Baker D (2001) Ab initio protein structure prediction: progress and prospects. Annu Rev Biophys Biomol Struct 30:173–189. doi: 10.1146/annurev.biophys.30.1.173 CrossRefPubMedGoogle Scholar
  12. Bu L, Beckham GT, Shirts MR, Nimlos MR, Adney WS, Himmel ME, Crowley MF (2011) Probing carbohydrate product expulsion from a processive cellulase with multiple absolute binding free energy methods. J Biol Chem 286(20):18161–18169. doi: 10.1074/jbc.M110.212076 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33(Web Server issue):W306–W310. doi: 10.1093/nar/gki375
  14. Carey PR (1996) Protein engineering and design. Academic Press, San Diego, CAGoogle Scholar
  15. Ceulemans H, Russell RB (2004) Fast fitting of atomic structures to low-resolution electron density maps by surface overlap maximization. J Mol Biol 338(4):783–793. doi: 10.1016/j.jmb.2004.02.066 CrossRefPubMedGoogle Scholar
  16. Chandonia JM, Brenner SE (2005) Implications of structural genomics target selection strategies: Pfam5000, whole genome, and random approaches. Proteins 58(1):166–179. doi: 10.1002/prot.20298 CrossRefPubMedGoogle Scholar
  17. Chipot C, Pohorille A (2007) Free energy calculations: theory and applications in chemistry and biology. Springer series in chemical physics, vol 86, Study edn. Springer, New YorkCrossRefGoogle Scholar
  18. Christensen NJ, Kepp KP (2012) Accurate stabilities of laccase mutants predicted with a modified FoldX protocol. J Chem Inf Model 52(11):3028–3042. doi: 10.1021/ci300398z CrossRefPubMedGoogle Scholar
  19. Clark RD, Strizhev A, Leonard JM, Blake JF, Matthew JB (2002) Consensus scoring for ligand/protein interactions. J Mol Graph Model 20(4):281–295CrossRefPubMedGoogle Scholar
  20. Crooks G (1998) Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J Stat Phys 90(5–6):1481–1487. doi: 10.1023/A:1023208217925 CrossRefGoogle Scholar
  21. de Vries SJ, Melquiond AS, Kastritis PL, Karaca E, Bordogna A, van Dijk M, Rodrigues JP, Bonvin AM (2010) Strengths and weaknesses of data-driven docking in critical assessment of prediction of interactions. Proteins 78(15):3242–3249. doi: 10.1002/prot.22814 CrossRefPubMedGoogle Scholar
  22. Dehouck Y, Grosfils A, Folch B, Gilis D, Bogaerts P, Rooman M (2009) Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Bioinformatics 25(19):2537–2543. doi: 10.1093/bioinformatics/btp445 CrossRefPubMedGoogle Scholar
  23. Dodson GG, Lane DP, Verma CS (2008) Molecular simulations of protein dynamics: new windows on mechanisms in biology. EMBO Rep 9(2):144–150. doi: 10.1038/sj.embor.7401160 PubMedCentralCrossRefPubMedGoogle Scholar
  24. Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737. doi: 10.1021/ja026939x CrossRefPubMedGoogle Scholar
  25. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012. doi: 10.1002/jcc.10349 CrossRefPubMedGoogle Scholar
  26. Durmaz E, Kuyucak S, Sezerman UO (2013) Modifying the catalytic preference of tributyrin in Bacillus thermocatenulatus lipase through in-silico modeling of enzyme-substrate complex. Protein Eng Des Sel 26(5):325–333. doi: 10.1093/protein/gzt004 CrossRefPubMedGoogle Scholar
  27. Durre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2(12):1525–1534. doi: 10.1002/biot.200700168 CrossRefPubMedGoogle Scholar
  28. Edholm O, Ghosh I (1993) Hysteresis and statistical errors in free energy perturbation L to D amino acid conversion. Mol Simul 10(2–6):241–253. doi: 10.1080/08927029308022167 CrossRefGoogle Scholar
  29. Erickson JA, Jalaie M, Robertson DH, Lewis RA, Vieth M (2004) Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy. J Med Chem 47(1):45–55. doi: 10.1021/jm030209y CrossRefPubMedGoogle Scholar
  30. Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aid Mol Des 15(5):411–428CrossRefGoogle Scholar
  31. Fischer M, Coleman RG, Fraser JS, Shoichet BK (2014) Incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery. Nat Chem 6(7):575–583. doi: 10.1038/nchem.1954 PubMedCentralCrossRefPubMedGoogle Scholar
  32. Floudas CA, Fung HK, McAllister SR, Mönnigmann M, Rajgaria R (2006) Advances in protein structure prediction and de novo protein design: a review. Chem Eng Sci 61(3):966–988. doi: 10.1016/j.ces.2005.04.009 CrossRefGoogle Scholar
  33. Francoijs CJ, Klomp JP, Knegtel RM (2000) Sequence annotation of nuclear receptor ligand-binding domains by automated homology modeling. Protein Eng 13(6):391–394CrossRefPubMedGoogle Scholar
  34. Ginalski K, Rychlewski L, Baker D, Grishin NV (2004) Protein structure prediction for the male-specific region of the human Y chromosome. Proc Natl Acad Sci USA 101(8):2305–2310PubMedCentralCrossRefPubMedGoogle Scholar
  35. Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9(1):1–5. doi: 10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6 CrossRefPubMedGoogle Scholar
  36. Gruno M, Valjamae P, Pettersson G, Johansson G (2004) Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol Bioeng 86(5):503–511. doi: 10.1002/bit.10838 CrossRefPubMedGoogle Scholar
  37. Guerois R, López de la Paz M (2006) Protein design: methods and applications. In: Methods in molecular biology, vol 340. Humana Press, Totowa, NJGoogle Scholar
  38. Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320(2):369–387. doi: 10.1016/S0022-2836(02)00442-4
  39. Gusakov AV, Sinitsyn AP, Klyosov AA (1987) Factors affecting the enzymatic hydrolysis of cellulose in batch and continuous reactors: computer simulation and experiment. Biotechnol Bioeng 29(7):906–910. doi: 10.1002/bit.260290715 CrossRefPubMedGoogle Scholar
  40. Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47(4):409–443. doi: 10.1002/prot.10115 CrossRefPubMedGoogle Scholar
  41. Hardin C, Pogorelov TV, Luthey-Schulten Z (2002) Ab initio protein structure prediction. Curr Opin Struct Biol 12(2):176–181CrossRefPubMedGoogle Scholar
  42. Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450(7172):964–972. doi: 10.1038/nature06522 CrossRefPubMedGoogle Scholar
  43. Hilbert M, Böhm G, Jaenicke R (1993) Structural relationships of homologous proteins as a fundamental principle in homology modeling. Proteins 17(2):138–151. doi: 10.1002/prot.340170204 CrossRefPubMedGoogle Scholar
  44. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807. doi: 10.1126/science.1137016 CrossRefPubMedGoogle Scholar
  45. Holm L, Sander C (1992) Evaluation of protein models by atomic solvation preference. J Mol Biol 225(1):93–105CrossRefPubMedGoogle Scholar
  46. Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381(6580):272. doi: 10.1038/381272a0 CrossRefPubMedGoogle Scholar
  47. Hoppe A, Theimer RR (1996) Titrimetric test for lipase activity using stabilized triolein emulsions. Phytochemistry 42(4):973–978. doi: 10.1016/0031-9422(96)00051-9
  48. Isralewitz B, Baudry J, Gullingsrud J, Kosztin D, Schulten K (2001) Steered molecular dynamics investigations of protein function. J Mol Graph Model 19(1):13–25. doi: 10.1016/S1093-3263(00)00133-9
  49. Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78:2690–2693CrossRefGoogle Scholar
  50. Jones DT (2000) Protein structure prediction in the postgenomic era. Curr Opin Struct Biol 10(3):371–379CrossRefPubMedGoogle Scholar
  51. Jorgensen WL, Madura JD (1983) Quantum and statistical mechanical studies of liquids. 25. Solvation and conformation of methanol in water. J Am Chem Soc 105(6):1407–1413. doi: 10.1021/ja00344a001 CrossRefGoogle Scholar
  52. Ju P, Pages G, Riek RP, Chen PC, Torres AM, Bansal PS, Kuyucak S, Kuchel PW, Vandenberg JI (2009) The pore domain outer helix contributes to both activation and inactivation of the HERG K+ channel. J Biol Chem 284(2):1000–1008. doi: 10.1074/jbc.M806400200 CrossRefPubMedGoogle Scholar
  53. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9(9):646–652. doi: 10.1038/nsb0902-646 CrossRefPubMedGoogle Scholar
  54. Karplus M, Petsko GA (1990) Molecular dynamics simulations in biology. Nature 347(6294):631–639. doi: 10.1038/347631a0 CrossRefPubMedGoogle Scholar
  55. Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32(Web Server issue):W526–W531. doi: 10.1093/nar/gkh468
  56. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3(5):300–313. doi: 10.1063/1.1749657 CrossRefGoogle Scholar
  57. Kirkwood JG, Alder BJ (1968) Theory of liquids. His collected works. Gordon and Breach, New YorkGoogle Scholar
  58. Kua J, Zhang Y, McCammon JA (2002) Studying enzyme binding specificity in acetylcholinesterase using a combined molecular dynamics and multiple docking approach. J Am Chem Soc 124(28):8260–8267. doi: 10.1021/ja020429l CrossRefPubMedGoogle Scholar
  59. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161(2):269–288CrossRefPubMedGoogle Scholar
  60. Lazakidou AA (2010) Biocomputation and biomedical informatics: case studies and applications. Medical Information Science Reference, HersheyCrossRefGoogle Scholar
  61. Leach AR (2001) Molecular modelling: principles and applications, 2nd edn. Prentice Hall, HarlowGoogle Scholar
  62. Lemer CM, Rooman MJ, Wodak SJ (1995) Protein structure prediction by threading methods: evaluation of current techniques. Proteins 23(3):337–355. doi: 10.1002/prot.340230308 CrossRefPubMedGoogle Scholar
  63. Lv M, Ma S, Tian Y, Zhang X, Lv W, Zhai H (2015) Computational studies on the binding mechanism between triazolone inhibitors and Chk1 by molecular docking and molecular dynamics. Mol Biosyst 11(1):275–286. doi: 10.1039/c4mb00449c CrossRefPubMedGoogle Scholar
  64. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FT, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616. doi: 10.1021/jp973084f CrossRefPubMedGoogle Scholar
  65. Malcata FX (1996) Engineering of/with lipases. NATO ASI series. Series E, Applied sciences, vol 317. Kluwer Academic, DordrechtGoogle Scholar
  66. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267(5612):585–590CrossRefPubMedGoogle Scholar
  67. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem 19(14):1639–1662CrossRefGoogle Scholar
  68. Muegge I, Rarey M (2001) Small molecule docking and scoring, Reviews in computational chemistry. Wiley, New York, pp 1–60. doi: 10.1002/0471224413.ch1 Google Scholar
  69. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676. doi: 10.1002/jcc.20090 CrossRefPubMedGoogle Scholar
  70. Pappalardo M, Milardi D, Grasso D, La Rosa C (2007) Steered molecular dynamics studies reveal different unfolding pathways of prions from mammalian and non-mammalian species. New J Chem 31(6):901–905. doi: 10.1039/B700764G CrossRefGoogle Scholar
  71. Park SJ, Cochran JR (2010) Protein engineering and design. CRC, Boca Raton, FLGoogle Scholar
  72. Park S, Khalili-Araghi F, Tajkhorshid E, Schulten K (2003) Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. J Chem Phys 119:3559–3566CrossRefGoogle Scholar
  73. Patel JS, Berteotti A, Ronsisvalle S, Rocchia W, Cavalli A (2014) Steered molecular dynamics simulations for studying protein-ligand interaction in cyclin-dependent kinase 5. J Chem Inf Model 54(2):470–480. doi: 10.1021/ci4003574 CrossRefPubMedGoogle Scholar
  74. Peitsch MC (1996) ProMod and Swiss-Model: internet-based tools for automated comparative protein modelling. Biochem Soc Trans 24(1):274–279CrossRefPubMedGoogle Scholar
  75. Peplowski L, Kubiak K, Nowak W (2008) Mechanical aspects of nitrile hydratase enzymatic activity. Steered molecular dynamics simulations of Pseudonocardia thermophila JCM 3095. Chem Phys Lett 467(1–3):144–149. doi: 10.1016/j.cplett.2008.10.072 CrossRefGoogle Scholar
  76. Perakyla M (2009) Ligand unbinding pathways from the vitamin D receptor studied by molecular dynamics simulations. Eur Biophys J 38(2):185–198. doi: 10.1007/s00249-008-0369-x CrossRefPubMedGoogle Scholar
  77. Pesce A, Nardini M, Dewilde S, Capece L, Marti MA, Congia S, Salter MD, Blouin GC, Estrin DA, Ascenzi P, Moens L, Bolognesi M, Olson JS (2011) Ligand migration in the apolar tunnel of Cerebratulus lacteus mini-hemoglobin. J Biol Chem 286(7):5347–5358. doi: 10.1074/jbc.M110.169045 PubMedCentralCrossRefPubMedGoogle Scholar
  78. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. doi: 10.1002/jcc.20289 PubMedCentralCrossRefPubMedGoogle Scholar
  79. Pongprayoon P, Beckstein O, Wee CL, Sansom MS (2009) Simulations of anion transport through OprP reveal the molecular basis for high affinity and selectivity for phosphate. Proc Natl Acad Sci USA 106(51):21614–21618. doi: 10.1073/pnas.0907315106 PubMedCentralCrossRefPubMedGoogle Scholar
  80. Price DJ, Brooks CL 3rd (2002) Modern protein force fields behave comparably in molecular dynamics simulations. J Comput Chem 23(11):1045–1057. doi: 10.1002/jcc.10083 CrossRefPubMedGoogle Scholar
  81. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489. doi: 10.1126/science.1114736 CrossRefPubMedGoogle Scholar
  82. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261(3):470–489. doi: 10.1006/jmbi.1996.0477 CrossRefPubMedGoogle Scholar
  83. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815. doi: 10.1006/jmbi.1993.1626 CrossRefPubMedGoogle Scholar
  84. Sanchez R, Pieper U, Melo F, Eswar N, Marti-Renom MA, Madhusudhan MS, Mirkovic N, Sali A (2000) Protein structure modeling for structural genomics. Nat Struct Biol 7(Suppl):986–990. doi: 10.1038/80776 CrossRefPubMedGoogle Scholar
  85. Schlick T (2010) Molecular modeling and simulation: an interdisciplinary guide. Interdisciplinary applied mathematics, vol 21, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  86. Schulz-Gasch T, Stahl M (2003) Binding site characteristics in structure-based virtual screening: evaluation of current docking tools. J Mol Model 9(1):47–57. doi: 10.1007/s00894-002-0112-y PubMedGoogle Scholar
  87. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nucleic Acids Res 33(Web Server issue):W382–W388. doi: 10.1093/nar/gki387
  88. Shaw DE (2013) Millisecond-long molecular dynamics simulations of proteins on a special-purpose machine. Biophys J 104(2, Suppl 1):45a. doi: 10.1016/j.bpj.2012.11.289
  89. Shetty K (2006) Food biotechnology, 2nd edn. CRC Press, Taylor & Francis, New YorkGoogle Scholar
  90. Solis FJW (1981) Minimization by random search techniques. Math Oper Res 6(1):19–30. doi: 10.1287/moor.6.1.19 CrossRefGoogle Scholar
  91. Sousa SF, Fernandes PA, Ramos MJ (2006) Protein-ligand docking: current status and future challenges. Proteins 65(1):15–26. doi: 10.1002/prot.21082 CrossRefPubMedGoogle Scholar
  92. Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25(7):786–793. doi: 10.1038/nbt1317 CrossRefPubMedGoogle Scholar
  93. Takeda-Shitaka M, Takaya D, Chiba C, Tanaka H, Umeyama H (2004) Protein structure prediction in structure based drug design. Curr Med Chem 11(5):551–558CrossRefPubMedGoogle Scholar
  94. Teichmann SA, Chothia C, Gerstein M (1999) Advances in structural genomics. Curr Opin Struct Biol 9(3):390–399. doi: 10.1016/S0959-440X(99)80053-0
  95. Teodoro ML, Kavraki LE (2003) Conformational flexibility models for the receptor in structure based drug design. Curr Pharm Des 9(20):1635–1648CrossRefPubMedGoogle Scholar
  96. Timucin E, Sezerman OU (2013) The conserved lid tryptophan, W211, potentiates thermostability and thermoactivity in bacterial thermoalkalophilic lipases. PLoS One 8(12):e85186. doi: 10.1371/journal.pone.0085186, PONE-D-13-32526 [pii]
  97. Totrov M, Abagyan R (2008) Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol 18(2):178–184. doi: 10.1016/ PubMedCentralCrossRefPubMedGoogle Scholar
  98. Verger R, Haas GHD (1976) Interfacial enzyme kinetics of lipolysis. Annu Rev Biophys Bioeng 5:77–117CrossRefPubMedGoogle Scholar
  99. Vitkup D, Melamud E, Moult J, Sander C (2001) Completeness in structural genomics. Nat Struct Biol 8(6):559–566. doi: 10.1038/88640 CrossRefPubMedGoogle Scholar
  100. Vyas VK, Ukawala RD, Ghate M, Chintha C (2012) Homology modeling a fast tool for drug discovery: current perspectives. Indian J Pharm Sci 74(1):1–17. doi: 10.4103/0250-474X.102537 PubMedCentralCrossRefPubMedGoogle Scholar
  101. Wang W, Kollman PA (2001) Computational study of protein specificity: the molecular basis of HIV-1 protease drug resistance. Proc Natl Acad Sci USA 98(26):14937–14942. doi: 10.1073/pnas.251265598 PubMedCentralCrossRefPubMedGoogle Scholar
  102. Wang C, Bradley P, Baker D (2007) Protein-protein docking with backbone flexibility. J Mol Biol 373(2):503–519. doi: 10.1016/j.jmb.2007.07.050 CrossRefPubMedGoogle Scholar
  103. Werner T, Sander K, Tanrikulu Y, Kottke T, Proschak E, Stark H, Schneider G (2010) In silico characterization of ligand binding modes in the human histamine H4 receptor and their impact on receptor activation. Chembiochem 11(13):1850–1855. doi: 10.1002/cbic.201000180 CrossRefPubMedGoogle Scholar
  104. Wood RH, Muhlbauer WCF, Thompson PT (1991) Systematic errors in free energy perturbation calculations due to a finite sample of configuration space: sample-size hysteresis. J Phys Chem 95(17):6670–6675. doi: 10.1021/j100170a054 CrossRefGoogle Scholar
  105. Worth CL, Preissner R, Blundell TL (2011) SDM--a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res 39(Web Server issue):W215–W222. doi: 10.1093/nar/gkr363
  106. Yang LJ, Zou J, Xie HZ, Li LL, Wei YQ, Yang SY (2009) Steered molecular dynamics simulations reveal the likelier dissociation pathway of imatinib from its targeting kinases c-Kit and Abl. PLoS One 4(12):e8470. doi: 10.1371/journal.pone.0008470 PubMedCentralCrossRefPubMedGoogle Scholar
  107. Zhang Y (2007) Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 69(Suppl 8):108–117. doi: 10.1002/prot.21702 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Molecular Biology, Genetics and Biotechnology, Faculty of Natural Sciences and EngineeringSabanci UniversityIstanbulTurkey
  2. 2.Department of Biostatistics and Medical Informatics, School of MedicineAcibadem UniversityIstanbulTurkey

Personalised recommendations