Human-Computer Interaction

INTERACT 2015: Human-Computer Interaction – INTERACT 2015 pp 80-98 | Cite as

Smartphone-Based Gait Measurement Application for Exercise and Its Effects on the Lifestyle of Senior Citizens

  • Takahiro Miura
  • Ken-ichiro Yabu
  • Atsushi Hiyama
  • Noriko Inamura
  • Michitaka Hirose
  • Tohru Ifukube
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9298)

Abstract

Population aging leads to more expensive social security and medical care in a society. In order to minimize national expenditure dedicated to providing support to the elderly, it is necessary to reduce the cost of treatment. Current prophylactic approaches mainly include training programs tailored towards seniors, who may be assisted by caregivers, for wellness maintenance and enhancement. However, these approaches are mainly administered by volunteers, who are often overburdened because of labor shortages. It is thus necessary to design and implement a system that enables seniors to maintain and improve their health by themselves. In this study, we propose and test a smartphone-based gait measurement application. Our results indicate that the mobile application can help motivate seniors to walk more regularly and improve their walking ability. Moreover, we found in our experiments that since our application helped improve our senior subjects’ physical fitness, some of them became interested in participating in social activities and using new technologies as a consequence.

Keywords

Seniors Smartphones Walking Changes in attitudes 

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    jqPlot charts and graphs for jquery. http://www.jqplot.com/
  5. 5.
    jQuery mobile. http://jquerymobile.com/
  6. 6.
  7. 7.
    UP by Jawbone. https://jawbone.com/up
  8. 8.
    Al Mahmud, A., Keyson, D.V.: Ubiquitous support for midwives to leverage daily activities. In: Proceedings of the UbiComp 2013 Adjunct, pp. 251–254. ACM, New York (2013)Google Scholar
  9. 9.
    Allet, L., Knols, R.H., Shirato, K., de Bruin, E.D.: Wearable systems for monitoring mobility-related activities in chronic disease: a systematic review. Sensors (Basel) 10(10), 9026–9052 (2010)CrossRefGoogle Scholar
  10. 10.
    Anderson, I., Maitland, J., Sherwood, S., Barkhuus, L., Chalmers, M., Hall, M., Brown, B., Muller, H.: Shakra: tracking and sharing daily activity levels with unaugmented mobile phones. Mob. Netw. Appl. 12(2–3), 185–199 (2007)CrossRefGoogle Scholar
  11. 11.
    Arai, T., Obuchi, S., Shiba, Y., Omuro, K., Nakano, C., Higashi, T.: The feasibility of measuring joint angular velocity with a gyro-sensor. Arch. Phys. Med. Rehabil. 89(1), 95–99 (2008)CrossRefGoogle Scholar
  12. 12.
    Arnrich, B., Osmani, V., Riva, G., Bardram, J.: Ubihealth 2010: the 5th international work- shop on ubiquitous health and wellness. In: Proceedings of the Ubicomp 2010 Adjunct, pp. 497–500. ACM, New York (2010)Google Scholar
  13. 13.
    Brajdic, A., Harle, R.: Walk detection and step counting on unconstrained smartphones. In: Proceedings of the UbiComp 2013, pp. 225–234. ACM, New York (2013)Google Scholar
  14. 14.
    Cabinet Office: Annual report on the aging society (2013). http://www8.cao.go.jp/kourei/whitepaper/w-2013/gaiyou/s1_1.html. (in Japanese)
  15. 15.
    Caine, K.E., Zimmerman, C.Y., Schall-Zimmerman, Z., Hazlewood, W.R., Sulgrove, A.C., Camp, L.J., Connelly, K.H., Huber, L.L., Shankar, K.: Digiswitch: design and evaluation of a device for older adults to preserve privacy while monitoring health at home. In: Proceedings of the IHI 2010, pp. 153–162. ACM, New York (2010)Google Scholar
  16. 16.
    Chuah, M., Sample, S.: Fitness tour: a mobile application for combating obesity. In: Proceedings of the MobileHealth 2011, pp. 9:1–9:5. ACM, New York (2011)Google Scholar
  17. 17.
    Cumming, E., Henry, W.E.: Growing Old: The Process of Disengagement. Basic Books, New York (1961)Google Scholar
  18. 18.
    Earles, D.R., Judge, J.O., Gunnarsson, O.T.: Velocity training induces power-specific adap- tations in highly functioning older adults. Arch. Phys. Med. Rehabil. 82(7), 872–878 (2001)CrossRefGoogle Scholar
  19. 19.
    Fiatarone, M.A., Marks, E.C., Ryan, N.D., Meredith, C.N., Lipsitz, L.A., Evans, W.J.: High- intensity strength training in nonagenarians. effects on skeletal muscle. JAMA 263(22), 3029–3034 (1990)CrossRefGoogle Scholar
  20. 20.
    Fiatarone, M.A., O’Neill, E.F., Doyle, N., Clements, K.M., Roberts, S.B., Kehayias, J.J., Lipsitz, L.A., Evans, W.J.: The boston ficsit study: the effects of resistance training and nutritional supplementation on physical frailty in the oldest old. J. Am. Geriatr. Soc. 41(3), 333–337 (1993)CrossRefGoogle Scholar
  21. 21.
    Fiatarone, M.A., O’Neill, E.F., Ryan, N.D., Clements, K.M., Solares, G.R., Nelson, M.E., Roberts, S.B., Kehayias, J.J., Lipsitz, L.A., Evans, W.J.: Exercise training and nutritional supplementation for physical frailty in very elderly people. N. Engl. J. Med. 330(25), 1769–1775 (1994)CrossRefGoogle Scholar
  22. 22.
    Hagler, S., Austin, D., Hayes, T.L., Kaye, J., Pavel, M.: Unobtrusive and ubiquitous in-home monitoring: A methodology for continuous assessment of gait velocity in elders. IEEE Trans. Biomed. Eng. 57(4), 813–820 (2010)CrossRefGoogle Scholar
  23. 23.
    Hammerl, S., Hermann, T., Ritter, H.: Towards a semi-automatic personal digital diary: de- tecting daily activities from smartphone sensors. In: Proceedings of the PETRA 2012, pp. 24:1–24:8. ACM, New York (2012)Google Scholar
  24. 24.
    Harris, T.J., Owen, C.G., Victor, C.R., Adams, R., Cook, D.G.: What factors are associated with physical activity in older people, assessed objectively by accelerometry? Br. J. Sports Med. 43(6), 442–450 (2009)CrossRefGoogle Scholar
  25. 25.
    Havighurst, R.J., Albrecht, R.E.: Older people. Arno Press (1980)Google Scholar
  26. 26.
    Hurling, R., Catt, M., Boni, M.D., Fairley, B.W., Hurst, T., Murray, P., Richardson, A., Sodhi, J.S.: Using internet and mobile phone technology to deliver an automated physical activity program: randomized controlled trial. J. Med. Internet Res. 9(2), e7 (2007)CrossRefGoogle Scholar
  27. 27.
    Inaba, Y., Obuchi, S., Arai, T., Satake, K., Takahira, N.: The long-term effects of progressive resistance training on health-related quality in older adults. J Physiol Anthropol 27(2), 57–61 (2008)CrossRefGoogle Scholar
  28. 28.
    Kaneko, R., Ishikawa, A., Ishii, F., Sasai, T., Iwasawa, M., Mita, F., Moriizumi, R.: Popu- lation projections for japan: 2006-2055 outline of results, methods, and assumptions. Jpn. J. Popul. 6(1), 76–114 (2008)MATHGoogle Scholar
  29. 29.
    Kawarada, A., Takagi, T., Tsukada, A., Sasaki, K., Ishijima, M., Tamura, T., Togawa, T., Yamakoshi, K.: Evaluation of automated health monitoring system at the “welfare techno house”. In: Proceedings of the IEEE EMBC, 1998, vol. 4, pp. 1984–1987 (1998)Google Scholar
  30. 30.
    Kay, M., Morris, D., Schraefel, M., Kientz, J.A.: There’s no such thing as gaining a pound: Reconsidering the bathroom scale user interface. In: Proceedings of the UbiComp 2013, pp. 401–410. ACM, New York (2013)Google Scholar
  31. 31.
    Kientz, J.A., Patel, S.N., Jones, B., Price, E., Mynatt, E.D., Abowd, G.D.: The georgia tech aware home. In: CHI EA 2008, pp. 3675–3680. ACM, New York (2008)Google Scholar
  32. 32.
    Kobayashi, M., Hiyama, A., Miura, T., Asakawa, C., Hirose, M., Ifukube, T.: Elderly User Evaluation of Mobile Touchscreen Interactions. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part I. LNCS, vol. 6946, pp. 83–99. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    Lepri, B., Mana, N., Cappelletti, A., Pianesi, F., Zancanaro, M.: What is happening now? detection of activities of daily living from simple visual features. Pers. Ubiquit. Comput. 14(8), 749–766 (2010)CrossRefGoogle Scholar
  34. 34.
    Lin, R.J., Zhu, X.: Leverage user experience through social networking to improve health adherence. In: CHI 2013 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2013, pp. 2341–2344. ACM, New York (2013)Google Scholar
  35. 35.
    Marie, C., Daniel, E., Eric, C.: Elderly daily activity habits or lifestyle in their natural environments. In: Proceedings of the PETRA 2011, pp. 26:1–26:4. ACM, New York (2011)Google Scholar
  36. 36.
    Muramatsu, N., Akiyama, H.: Japan: Super-aging society preparing for the future. Gerontologist 51(4), 425–432 (2011)CrossRefGoogle Scholar
  37. 37.
    Nakajima, K., Anzai, E., Iwakami, Y., Saito, M., Ino, S., Ifukube, T., Yamashita, K., Ohta, Y.: Development of the foot pressure measurement device and evaluation of ambulatory function for fall prevention on elderly. IEEJ MBE 60, 67–70 (2012)Google Scholar
  38. 38.
    Neugarten, B.L., Havighurst, R.J., Tobin, S.S.: Personality and patterns of aging. In: Havighurst, R.J., et al. (eds.) The meanings of age. Chicago [ua]: Univ. of Chicago Pr, pp. 264–269 (1996)Google Scholar
  39. 39.
    Price, M.M., Pak, R., Müller, H., Stronge, A.: Older adults’ perceptions of usefulness of personal health records. Univ. Access Inf. Soc. 12(2), 191–204 (2013)CrossRefGoogle Scholar
  40. 40.
    Sayers, S.P., Bean, J., Cuoco, A., LeBrasseur, N.K., Jette, A., Fielding, R.A.: Changes in function and disability after resistance training: does velocity matter?: a pilot study. Am. J. Phys. Med. Rehabil. 82(8), 605–613 (2003)Google Scholar
  41. 41.
    Schuldhaus, D., Leutheuser, H., Eskofier, B.M.: Classification of daily life activities by decision level fusion of inertial sensor data. In: Proceedings of the BodyNets 2013, pp. 77–82. ICST, Brussels (2013)Google Scholar
  42. 42.
    Seiter, J., Feese, S., Arnrich, B., Tröster, G., Amft, O., Macrea, L., Maurer, K.: Evaluating daily life activity using smartphones as novel outcome measure for surgical pain therapy. In: Proceedings of the BodyNets 2013, pp. 153–156. ICST, Brussels (2013)Google Scholar
  43. 43.
    Shimada, H., Obuchi, S., Furuna, T., Suzuki, T.: New intervention program for preventing falls among frail elderly people: the effects of perturbed walking exercise using a bilateral separated treadmill. Am. J. Phys. Med. Rehabil. 83(7), 493–499 (2004)CrossRefGoogle Scholar
  44. 44.
    Siewiorek, D.: Generation smartphone. IEEE Spectr. 49(9), 54–58 (2012)CrossRefGoogle Scholar
  45. 45.
    Silva, P.A., Nunes, F., Vasconcelos, A., Kerwin, M., Moutinho, R., Teixeira, P.: Using the smartphone accelerometer to monitor fall risk while playing a game: the design and usability evaluation of dance! don’t fall. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2013. LNCS, vol. 8027, pp. 754–763. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  46. 46.
    Spina, G., Huang, G., Vaes, A., Spruit, M., Amft, O.: Copdtrainer: a smartphone-based motion rehabilitation training system with real-time acoustic feedback. In: Proceedings of the UbiComp 2013, pp. 597–606. ACM, New York (2013)Google Scholar
  47. 47.
    Tamura, T., Kawarada, A., Nambu, M., Tsukada, A., Sasaki, K., Yamakoshi, K.I.: E-health-care at an experimental welfare techno house in Japan. Open Med. Inform. J. 1, 1–7 (2007)CrossRefGoogle Scholar
  48. 48.
    Tanaka, T., Kojima, S., Takeda, H., Ino, S., Ifukube, T.: The influence of moving auditory stimuli on standing balance in healthy young adults and the elderly. Ergonomics 44(15), 1403–1412 (2001)CrossRefGoogle Scholar
  49. 49.
    Tsutsui, T., Muramatsu, N.: Japan’s universal long-term care system reform of 2005: containing costs and realizing a vision. J. Am. Geriatrics Soc. 55(9), 1458–1463 (2007)CrossRefGoogle Scholar
  50. 50.
    Yamashita, K., Iwasaki, Y., Imaizumi, K., Nakajima, S., Ino, S., Ifukube, T., Koyama, H., Kawasumi, M.: Evaluation of postural control of aging change by stabilogram diffusion analysis. J. Life Support Eng. 20(1), 31–37 (2008). (in Japanese)CrossRefGoogle Scholar
  51. 51.
    Yun, T.J., Arriaga, R.I.: A text message a day keeps the pulmonologist away. In: Proceedings of the CHI 2013, pp. 1769–1778. ACM, New York (2013)Google Scholar
  52. 52.
    Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.Y.: Understanding mobility based on GPS data. In: Proceedings of the UbiComp 2008, pp. 312–321. ACM, New York (2008)Google Scholar
  53. 53.
    Zickuhr, K., Madden, M.: Older adults and internet use. Pew Internet & American Life Project (2012)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Takahiro Miura
    • 1
    • 2
  • Ken-ichiro Yabu
    • 1
  • Atsushi Hiyama
    • 2
  • Noriko Inamura
    • 3
  • Michitaka Hirose
    • 2
  • Tohru Ifukube
    • 1
  1. 1.Institute of GerontologyThe University of TokyoBunkyo-kuJapan
  2. 2.Graduate School of Information Science and TechnologyThe University of TokyoBunkyo-kuJapan
  3. 3.Urban Design Center Kashiwa-no-ha (UDCK)KashiwaJapan

Personalised recommendations