Human-Computer Interaction

INTERACT 2015: Human-Computer Interaction – INTERACT 2015 pp 278-295 | Cite as

In-Situ Occlusion Resolution for Hybrid Tabletop Environments

  • Jan Riemann
  • Mohammadreza Khalilbeigi
  • Max Mühlhäuser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9298)

Abstract

In this paper we explore the use of in situ occlusion resolution in mixed physical/digital tabletop scenarios. We propose the extension of back-projected tabletops with interactive top-projection to turn the physical object’s surface into peripheral displays. These displays are used to resolve occlusion in situ without the need to use additional tabletop display space and keeping the spatial perception of the occluded objects. We contribute a visualization concept and a set of interaction techniques for in situ occlusion resolution and easy access to occluded objects. The techniques are implemented in a system named ProjecTop, which is evaluated in an quantitative user study. The study results highlight how top-projection can be beneficially used. We conclude with a set of design implications derived from the study’s results.

Keywords

Interactive tabletops Occlusion awareness Hybrid interaction Peripheral displays Multitouch 

References

  1. 1.
    Cotting, D., Gross, M.: Interactive environment-aware display bubbles. In: Proceedings of the UIST, pp. 245–254. ACM, New York (2006)Google Scholar
  2. 2.
    Freeman, E., Brewster, S.: Messy tabletops: clearing up the occlusion problem. In: CHI EA, pp. 1515–1520. ACM, New York (2013)Google Scholar
  3. 3.
    Furumi, G., Sakamoto, D., Igarashi, T.: Snaprail: a tabletop user interface widget for addressing occlusion by physical objects. In: Proceedings of the ITS, pp. 193–196. ACM, New York (2012)Google Scholar
  4. 4.
    Hartmann, B., Morris, M.R., Benko, H., Wilson, A.D.: Pictionaire: supporting collaborative design work by integrating physical and digital artifacts. In: Proceedings of the CSCW, pp. 421–424. ACM, New York (2010)Google Scholar
  5. 5.
    Iwai, D., Sato, K.: Limpid desk: see-through access to disorderly desktop in projection-based mixed reality. In: Proceedings of the VRST, pp. 112–115. ACM, New York (2006)Google Scholar
  6. 6.
    Javed, W., Kim, K., Ghani, S., Elmqvist, N.: Evaluating physical/virtual occlusion management techniques for horizontal displays. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part III. LNCS, vol. 6948, pp. 391–408. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Khalilbeigi, M., Steimle, J., Mühlhäuser, M.: Interaction techniques for hybrid piles of documents on interactive tabletops. In: CHI EA, pp. 3943–3948. ACM, New York (2010)Google Scholar
  8. 8.
    Khalilbeigi, M., Steimle, J., Riemann, J., Dezfuli, N., Mühlhäuser, M., Hollan, J.D.: Objectop: occlusion awareness of physical objects on interactive tabletops. In: Proceedings of the ITS, pp. 255–264. ACM, New York (2013)Google Scholar
  9. 9.
    Klompmaker, F., Nebe, K., Fast, A.: dSensingNI: a framework for advanced tangible interaction using a depth camera. In: Proceedings of the TEI, pp. 217–224. ACM, New York (2012)Google Scholar
  10. 10.
    Koike, H., Sato, Y., Kobayashi, Y.: Integrating paper and digital information on enhanceddesk: a method for realtime finger tracking on an augmented desk system. ACM TOCHI 8(4), 307–322 (2001). ACM, New YorkCrossRefGoogle Scholar
  11. 11.
    Liao, C., Tang, H., Liu, Q., Chiu, P., Chen, F.: Fact: fine-grained cross-media interaction with documents via a portable hybrid paper-laptop interface. In: Proceedings of the ACM MM, pp. 361–370. ACM, New York (2010)Google Scholar
  12. 12.
    Linder, N., Maes, P.: Luminar: portable robotic augmented reality interface design and prototype. In: Adjunct Proceedings of the UIST, pp. 395–396. ACM, New York (2010)Google Scholar
  13. 13.
    Mitsuhara, H., Yano, Y., Moriyama, T.: Paper-top interface for supporting notetaking and its preliminary experiment. In: IEEE SMC, pp. 3456–3462 (2010)Google Scholar
  14. 14.
    NASA Ames Research Center, Moffet Field: Nasa tlx (1988)Google Scholar
  15. 15.
    Ramos, G., Robertson, G., Czerwinski, M., Tan, D., Baudisch, P., Hinckley, K., Agrawala, M.: Tumble! splat! helping users access and manipulate occluded content in 2d drawings. In: Proceedings of the ACM AVI, pp. 428–435. ACM, New York (2006)Google Scholar
  16. 16.
    Rekimoto, J., Saitoh, M.: Augmented surfaces: A spatially continuous work space for hybrid computing environments. In: Proceedings of the CHI, pp. 378–385. ACM, New York (1999)Google Scholar
  17. 17.
    Spindler, M.: Spatially aware tangible display interaction in a tabletop environment. In: Proceedings of the ITS, pp. 277–282. ACM, New York (2012)Google Scholar
  18. 18.
    Spindler, M., Martsch, M., Dachselt, R.: Going beyond the surface: Studying multilayer interaction above the tabletop. In: Proceedings of the CHI, pp. 1277–1286. ACM, New York (2012)Google Scholar
  19. 19.
    Spindler, M., Stellmach, S., Dachselt, R.: Paperlens. In: Proceedings of the ITS, pp. 69–76. ACM, New York (2009)Google Scholar
  20. 20.
    Steimle, J., Khalilbeigi, M., Mühlhäuser, M., Hollan, J.D.: Physical and digital media usage patterns on interactive tabletop surfaces. In: Proceedings of the ITS, pp. 167–176. ACM, New York (2010)Google Scholar
  21. 21.
    Tabard, A., Gurn, S., Butz, A., Bardram, J.: A case study of object and occlusion management on the elabbench, a mixed physical/digital tabletop. In: Proceedings of the ITS, pp. 251–254. ACM, New York (2013)Google Scholar
  22. 22.
    Wellner, P.: Interacting with paper on the digitaldesk. Com. ACM 36, 87–96 (1993). ACM, New YorkCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Jan Riemann
    • 1
  • Mohammadreza Khalilbeigi
    • 1
  • Max Mühlhäuser
    • 1
  1. 1.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations