Human-Computer Interaction

INTERACT 2015: Human-Computer Interaction – INTERACT 2015 pp 259-277 | Cite as

HoverSpace

Analyses of the Perceived Spatial Affordances of Hover Interaction Above Tabletop Surfaces
  • Paul Lubos
  • Oscar Ariza
  • Gerd Bruder
  • Florian Daiber
  • Frank Steinicke
  • Antonio Krüger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9298)

Abstract

Recent developments in the area of stereoscopic displays and tracking technologies have paved the way to combine touch interaction on interactive surfaces with spatial interaction above the surface of a stereoscopic display. This holistic design space supports novel affordances and user experiences during touch interaction, but also induce challenges to the interaction design. In this paper we introduce the concept of hover interaction for such setups. Therefore, we analyze the non-visual volume above a virtual object, which is perceived as the corresponding hover space for that object. The results show that the users’ perceptions of hover spaces can be categorized into two groups. Either users assume that the shape of the hover space is extruded and scaled towards their head, or along the normal vector of the interactive surface. We provide a corresponding model to determine the shapes of these hover spaces, and confirm the findings in a practical application. Finally, we discuss important implications for the development of future touch-sensitive interfaces.

Keywords

Hover space Touch interaction Stereoscopic displays 3D interaction 

References

  1. 1.
    Annett, M., Grossman, T., Wigdor, D., Fitzmaurice, G.: Medusa: a proximity-aware multi-touch tabletop. In: Proceedings of the ACM UIST, pp. 337–346. ACM (2011)Google Scholar
  2. 2.
    Benko, H., Wilson, A.D., Baudisch, P.: Precise selection techniques for multi-touch screens. In: Proceedings of the SIGCHI CHI, pp. 1263–1272. ACM, New York (2006)Google Scholar
  3. 3.
    Bernstein, J.T., Amm, D.T., Leung, O., Mullens, C.T., King, B.M., Land, B.R., Cutler, R.T.: Touch and hover sensing, uS Patent App. 12/501,382. 10 July 2009Google Scholar
  4. 4.
    Bruder, G., Steinicke, F., Stuerzlinger, W.: Effects of visual conflicts on 3D selection task performance in stereoscopic display environments. In: Proceedings of the ACM 3DUI, pp. 115–118 (2013)Google Scholar
  5. 5.
    Bruder, G., Steinicke, F., Stuerzlinger, W.: To touch or not to touch? comparing 2d touch and 3d mid-air interaction on stereoscopic tabletop surfaces. In: Proceedings of the ACM SUI, pp. 1–8. ACM Press (2013)Google Scholar
  6. 6.
    Bruder, G., Steinicke, F., Stuerzlinger, W.: Touching the void revisited: analyses of touch behavior on and above tabletop surfaces. In: Winckler, M. (ed.) INTERACT 2013, Part I. LNCS, vol. 8117, pp. 278–296. Springer, Heidelberg (2013)Google Scholar
  7. 7.
    Buxton, W.: A three-state model of graphical input. In: Human-computer interaction-INTERACT, 90, pp. 449–456, Citeseer (1990)Google Scholar
  8. 8.
    Echtler, F., Huber, M., Klinker, G.: Shadow tracking on multi-touch tables. In: Proceedings of AVI, pp. 388–391. ACM, New York (2008)Google Scholar
  9. 9.
    Grossman, T., Hinckley, K., Baudisch, P., Agrawala, M., Balakrishnan, R.: Hover widgets: using the tracking state to extend the capabilities of pen-operated devices. In: Proceedings of the SIGCHI CHI, pp. 861–870. ACM, New York (2006)Google Scholar
  10. 10.
    Han, S., Park, J.: A study on touch & hover based interaction for zooming. In: CHI 2012 Extended Abstracts on Human Factors in Computing Systems, pp. 2183–2188. ACM (2012)Google Scholar
  11. 11.
    Hassenzahl, M., Burmester, M., Koller, F.: Attrakdiff: ein fragebogen zur messung wahrgenommener hedonischer und pragmatischer qualität. In: Proceedings of the Mensch & Computer, pp. 187–196. Springer (2003)Google Scholar
  12. 12.
    Hilliges, O., Izadi, S., Wilson, A.D., Hodges, S., Garcia-Mendoza, A., Butz, A.: Interactions in the air: adding further depth to interactive tabletops. In: UIST 2009: Proceedings of the ACM UIST, pp. 139–148. ACM (2009)Google Scholar
  13. 13.
    Leap Motion Inc: Leap Motion (2012). http://www.leapmotion.com/
  14. 14.
    Li, Y., Hinckley, K., Guan, Z., Landay, J.A.: Experimental analysis of mode switching techniques in pen-based user interfaces. In: Proceedings of the SIGCHI CHI, pp. 461–470. ACM (2005)Google Scholar
  15. 15.
    Loomis, J., Knapp, J.: Visual perception of egocentric distance in real and virtual environments. In: Hettinger, L., Haas, M. (eds.) Virtual and Adaptive Environments, pp. 21–46. Erlbaum, Mahwah (2003)Google Scholar
  16. 16.
    Lubos, P., Bruder, G., Steinicke, F.: Analysis of direct selection in head-mounted display environments. In: Proceedings of the IEEE 3DUI, pp. 1–8. IEEE (2014)Google Scholar
  17. 17.
  18. 18.
    Pyryeskin, D., Hancock, M., Hoey, J.: Extending interactions into hoverspace using reflected light. In: Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces, pp. 262–263. ACM (2011)Google Scholar
  19. 19.
    Schöning, J., Steinicke, F., Krüger, A., Hinrichs, K., Valkov, D.: bimanual interaction with interscopic multi-touch surfaces. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009. LNCS, vol. 5727, pp. 40–53. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Unity Technologies: Unity3D (2015). http://www.unity3d.com/
  21. 21.
    Valkov, D., Giesler, A., Hinrichs, K.H.: Imperceptible depth shifts for touch interaction with stereoscopic objects. In: Proceedings of the SIGCHI CHI, pp. 227–236. ACM (2014)Google Scholar
  22. 22.
    Willemsen, P., Gooch, A., Thompson, W., Creem-Regehr, S.: Effects of stereo viewing conditions on distance perception in virtual environments. Presence Teleoperators Virtual Environ. 17(1), 91–101 (2008)CrossRefGoogle Scholar
  23. 23.
    Zilch, D., Bruder, G., Steinicke, F., Lamak, F.: Design and evaluation of 3d gui widgets for stereoscopic touch-displays. In: Proceedings of the GI-Workshop VR/AR, pp. 37–48 (2013)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Paul Lubos
    • 1
  • Oscar Ariza
    • 1
  • Gerd Bruder
    • 1
  • Florian Daiber
    • 2
  • Frank Steinicke
    • 1
  • Antonio Krüger
    • 2
  1. 1.Human-Computer Interaction, Department of InformaticsUniversität HamburgHamburgGermany
  2. 2.German Research Center for Artificial IntelligenceSaarbrückenGermany

Personalised recommendations