Advertisement

Dimeric Sesquiterpenoids

  • Shang-Gao Liao
  • Jian-Min YueEmail author
Chapter
Part of the Progress in the Chemistry of Organic Natural Products book series (POGRCHEM, volume 101)

Abstract

It is widely accepted that a large number of proteins that are responsible for cellular function exist as dimers or need to be activated by dimerization before mediating certain signaling pathways. Simultaneously targeting both monomeric moieties of the dimeric proteins has shown potential in the development of various therapeutic agents. As dimeric molecules might be able to act on both moieties of a dimeric protein, dimeric sesquiterpenoids (DSs), which are generated biogenetically from coupling of two sesquiterpenoid molecules, are in essence potential biologically active molecules, and have attracted in recent years great attention for their peculiar structures and biological activities. In fact, a number of DSs are more potent than their monomeric precursors for some activities such as anti-inflammatory, anti-tumor, immunosuppressive, potassium channel blocking, antimalarial, anti-virus, and neurotrophic activities.

The complex and diversified structures of DSs also attracted attention of chemists in their isolation, structural elucidation, and synthetic construction.

In the contribution, a general view of the classification and distribution of DSs will be provided. Strategies for the structural elucidation of DSs and their analogues is presented. Chemical strategies for the convergence of the two sesquiterpenoid units is reviewed. Biological activities are discussed under each type of activity.

Keywords

Dimeric sesquiterpenoids Disesquiterpenoids Compound disesquiterpenoids Pseudo-disesquiterpenoids Dimeric aza-sesquiterpenoids Nuphar alkaloids 

Notes

Acknowledgments

The authors would like to express their gratitude to Dr. Zha-Jun Zhan for his kind help in literature discussions and to Dr. Neng-Lin Zhang for her help in reference editing.

References

  1. 1.
    Hadden MK, Blagg BSJ (2008) Dimeric approaches to anti-cancer chemotherapeutics. Anticancer Agents Med Chem 8:807CrossRefGoogle Scholar
  2. 2.
    Mei G, Di Venere A, Rosato N, Finazzi-Agrò A (2005) The importance of being dimeric. FEBS J 272:16CrossRefGoogle Scholar
  3. 3.
    Alexander LD, Sellers RP, Davis MR, Ardi VC, Johnson VA, Vasko RC, McAlpine SR (2009) Evaluation of di-sansalvamide A derivatives: synthesis, structure–activity relationship, and mechanism of action. J Med Chem 52:7927CrossRefGoogle Scholar
  4. 4.
    Ni F, Kota S, Takahashi V, Strosberg AD, Snyder JK (2011) Potent inhibitors of hepatitis C core dimerization as new leads for anti-hepatitis C agents. Bioorg Med Chem Lett 21:2198CrossRefGoogle Scholar
  5. 5.
    Jervis PJ, Moulis M, Jukes J-P, Ghadbane H, Cox LR, Cerundolo V, Besra GS (2012) Towards multivalent CD1d ligands: synthesis and biological activity of homodimeric α-galactosyl ceramide analogues. Carbohydr Res 356:152CrossRefGoogle Scholar
  6. 6.
    Zhan Z-J, Ying Y-M, Ma L-F, Shan W-G (2011) Natural disesquiterpenoids. Nat Prod Rep 28:594CrossRefGoogle Scholar
  7. 7.
    Lian G, Yu B (2010) Naturally occurring dimers from chemical perspective. Chem Biodivers 7:2660CrossRefGoogle Scholar
  8. 8.
    Zdero C, Bohlmann F, Niemeyer HM (1991) An unusual dimeric sesquiterpene and other constituents from Chilean Baccharis species. Phytochemistry 30:1597CrossRefGoogle Scholar
  9. 9.
    Jolad SD, Timmermann BN, Hoffmann JJ, Bates RB, Camou FA, Cole JR (1988) Sesquiterpenoids from Coreocarpus arizonicus. Phytochemistry 27:3545CrossRefGoogle Scholar
  10. 10.
    Mao S-C, Manzo E, Guo Y-W, Gavagnin M, Mollo E, Ciavatta ML, van Soest R, Cimino G (2007) New diastereomeric bis-sesquiterpenes from Hainan marine sponges Axinyssa variabilis and Lipastrotethya ana. Tetrahedron 63:11108CrossRefGoogle Scholar
  11. 11.
    Cichewicz RH, Clifford LJ, Lassen PR, Cao X, Freedman TB, Nafie LA, Deschamps JD, Kenyon VA, Flanary JR, Holman TR, Crews P (2005) Stereochemical determination and bioactivity assessment of (S)-(+)-curcuphenol dimers isolated from the marine sponge Didiscus aceratus and synthesized through laccase biocatalysis. Bioorg Med Chem 13:5600CrossRefGoogle Scholar
  12. 12.
    Joseph-Nathan P, Hernández JD, Román LU, García EG, Mendoza V, Mendoza S (1982) Coumarin and terpenoids from Perezia alamani var. oolepis. Phytochemistry 21:1129CrossRefGoogle Scholar
  13. 13.
    Sun L-L, Shao C-L, Chen J-F, Guo Z-Y, Fu X-M, Chen M, Chen Y-Y, Li R, de Voogd NJ, She Z-G, Lin Y-C, Wang C-Y (2012) New bisabolane sesquiterpenoids from a marine-derived fungus Aspergillus sp. isolated from the sponge Xestospongia testudinaria. Bioorg Med Chem Lett 22:1326CrossRefGoogle Scholar
  14. 14.
    Litaudon M, Bousserouel H, Awang K, Nosjean O, Martin M-T, Dau METH, Hadi HA, Boutin JA, Sevenét T, Guéritte F (2009) A dimeric sesquiterpenoid from a Malaysian Meiogyne as a new inhibitor of Bcl-xL/BakBH3 domain peptide interaction. J Nat Prod 72:480CrossRefGoogle Scholar
  15. 15.
    Mao S-C, Guo Y-W, van Soest R, Cimino G (2011) Trans-dimer D, a novel dimeric sesquiterpene with a bis-bisabolene skeleton from a Hainan sponge Axinyssa variabilis. J Asian Nat Prod Res 13:770CrossRefGoogle Scholar
  16. 16.
    Marco JA, Sanz JF, Yuste A, Carda M, Jakupovic J (1991) Sesquiterpene lactones from Artemisia barrelieri. Phytochemistry 30:3661CrossRefGoogle Scholar
  17. 17.
    Cai Y (1997) Stereochemistry of difurocumenone. J Beijing Med Univ 29:229Google Scholar
  18. 18.
    Triana J, López M, Rico M, González-Platas J, Quintana J, Estévez F, León F, Bermejo J (2003) Sesquiterpenoid derivatives from Gonospermum elegans and their cytotoxic activity for HL-60 human promyelocytic cells. J Nat Prod 66:943CrossRefGoogle Scholar
  19. 19.
    Macias FA, Lopez A, Varela RM, Molinillo JMG, Alves PLCA, Torres A (2004) Helivypolide G. A novel dimeric bioactive sesquiterpene lactone. Tetrahedron Lett 45:6567CrossRefGoogle Scholar
  20. 20.
    Bohlmann F, Adler A, Jakupovic J, King RM, Robinson H (1982) Naturally occurring terpene derivatives. Part 412. A dimeric germacranolide and other sesquiterpene lactones from Mikania species. Phytochemistry 21:1349CrossRefGoogle Scholar
  21. 21.
    Makhmudov MK, Tashkhodzhaev B, Abduazimov BK (1993) Conformation of the dimeric sesquiterpene germacrane lactone mycoguaianolide. Khim Prir Soedin: 213Google Scholar
  22. 22.
    Xue HZ, Zhang J, He LX, He CH, Zheng QT, Feng R (1989) The structure of versicolactone D. Yaoxue Xuebao 24:917Google Scholar
  23. 23.
    Vokáč K, Samek Z, Herout V, S̆orm F (1968) The structure of artabsin and absinthin. Tetrahedron Lett 9:3855CrossRefGoogle Scholar
  24. 24.
    Beauhaire J, Fourrey JL, Vuilhorgne M, Lallemand JY (1980) Dimeric sesquiterpene lactones: structure of absinthin. Tetrahedron Lett 21:3191CrossRefGoogle Scholar
  25. 25.
    Ma C-M, Nakamura N, Hattori M, Zhu S, Komatsu K (2000) Guaiane dimers and germacranolide from Artemisia caruifolia. J Nat Prod 63:1626CrossRefGoogle Scholar
  26. 26.
    Beauhaire J, Fourrey JL, Guittet E (1984) Structure of absintholide, a new guaianolide dimer of Artemisia absinthium L. Tetrahedron Lett 25:2751CrossRefGoogle Scholar
  27. 27.
    Stefani R, Schorr K, Tureta JM, Vichnewski W, Merfort I, Da Costa FB (2006) Sesquiterpene lactones from Dimerostemma species (Asteraceae) and in vitro potential anti-inflammatory activities. Z Naturforsch C 61:647CrossRefGoogle Scholar
  28. 28.
    Li Y, Zhu M-C, Zhang M-L, Wang Y-F, Dong M, Shi Q-W, Huo C-H, Sauriol F, Kiyota H, Gu Y-C, Cong B (2012) Achillinin B and C, new sesquiterpene dimers isolated from Achillea millefolium. Tetrahedron Lett 53:2601CrossRefGoogle Scholar
  29. 29.
    Wu Z-J, Xu X-K, Shen Y-H, Su J, Tian J-M, Liang S, Li H-L, Liu R-H, Zhang W-D (2008) Ainsliadimer A, a new sesquiterpene lactone dimer with an unusual carbon skeleton from Ainsliaea macrocephala. Org Lett 10:2397CrossRefGoogle Scholar
  30. 30.
    Wang Y, Shen Y-H, Jin H-Z, Fu J-J, Hu X-J, Qin J-J, Liu J-H, Chen M, Yan S-K, Zhang W-D (2008) Ainsliatrimers A and B, the first two guaianolide trimers from Ainsliaea fulvioides. Org Lett 10:5517CrossRefGoogle Scholar
  31. 31.
    Kasymov SZ, Abdullaev ND, Sidyakin GP, Yagudaev MR (1979) Anabsin—a new diguaianolide from Artemisia absinthium. Chem Nat Compd 15:430CrossRefGoogle Scholar
  32. 32.
    Wen J, Shi H, Xu Z, Chang H, Jia C, Zan K, Jiang Y, Tu P (2010) Dimeric guaianolides and sesquiterpenoids from Artemisia anomala. J Nat Prod 73:67CrossRefGoogle Scholar
  33. 33.
    Ullah N, Ahmed S, Ahmed Z, Mohammad P, Malik A (1999) Dimeric guaianolides from Daphne oleoides. Phytochemistry 51:559CrossRefGoogle Scholar
  34. 34.
    Zan K, Chai X-Y, Chen X-Q, Wu Q, Fu Q, Zhou S-X, Tu P-F (2012) Artanomadimers A–F: six new dimeric guaianolides from Artemisia anomala. Tetrahedron 68:5060CrossRefGoogle Scholar
  35. 35.
    Jakupovic J, Sun H, Geerts S, Bohlmann F (1987) New pseudoguaianolides from Ambrosia maritima. Planta Med 53:49CrossRefGoogle Scholar
  36. 36.
    Mallabaev A, Tashkhodzhaev B, Saitbaeva IM, Yagudaev MR, Sidyakin GP (1986) The structure of artelein — a dimeric lactone of a new type from Artemisia leucodes. Chem Nat Compd 22:42CrossRefGoogle Scholar
  37. 37.
    Ovezdurdyev A, Abdullaev ND, Yusupov MI, Kasymov SZ (1987) Artenolide, a new disesquiterpenoid from Artemisia absinthium. Khim Prir Soedin:667Google Scholar
  38. 38.
    Bohlmann F, Ang W, Trinks C, Jakupovic J, Huneck S (1985) Dimeric guaianolides from Artemisia sieversiana. Phytochemistry 24:1009CrossRefGoogle Scholar
  39. 39.
    Hu JF, Feng XZ (1998) Artselenoide, a new dimeric guaianolide from Artemisia selengensis. Chin Chem Lett 9:829Google Scholar
  40. 40.
    Lee S-H, Kang H-M, Song H-C, Lee H, Lee UC, Son K-H, Kim S-H, Kwon B-M (2000) Sesquiterpene lactones, inhibitors of farnesyl protein transferase, isolated from the flower of Artemisia sylvatica. Tetrahedron 56:4711CrossRefGoogle Scholar
  41. 41.
    Achenbach H, Benirschke G, Lange J (1996) Assufulvenal, a novel bis-sesquiterpene from Joannesia princeps. J Nat Prod 59:93CrossRefGoogle Scholar
  42. 42.
    Gao F, Wang H, Mabry TJ (1990) Sesquiterpene lactone aglycones and glycosides and inositol derivatives from Hymenoxys biennis. Phytochemistry 29:3875CrossRefGoogle Scholar
  43. 43.
    Tikhonova EV, Atazhanova GA, Raldugin VA, Bagryanskaya IY, Gatilov YV, Shakirov MM, Adekenov SM (2006) 2,12-Bis-hamazulenyl from Ajania fruticulosa essential oil. Chem Nat Compd 42:298CrossRefGoogle Scholar
  44. 44.
    Ali MS, Ahmed W, Armstrong AF, Ibrahim SA, Ahmed S, Parvez M (2006) Guaianolides from Salvia nubicola (Lamiaceae). Chem Pharm Bull 54:1235CrossRefGoogle Scholar
  45. 45.
    Ali MS, Ibrahim SA, Ahmed S, Lobkovsky E (2007) Guaiane sesquiterpene lactones from Salvia nubicola (Lamiaceae). Chem Biodivers 4:98CrossRefGoogle Scholar
  46. 46.
    Ibrahim SA, Ali MS, Ahmad F, Moazzam M, Tareen RB (2007) Bistaraxacin: a dimeric-guaianolide from Salvia nubicola (Lamiaceae). J Chem Soc Pak 29:394Google Scholar
  47. 47.
    Gu Q, Chen Y, Cui H, Huang D, Zhou J, Wu T, Chen Y, Shi L, Xu J (2013) Chrysanolide A, an unprecedented sesquiterpenoid trimer from the flowers of Chrysanthemum indicum L. RSC Adv 3:10168CrossRefGoogle Scholar
  48. 48.
    Castro V, Ciccio F, Alvarado S, Bohlmann F, Schmeda-Hirschmann G, Jakupovic J (1983) Decathieleanolide, a dimeric guaianolide from Decachaeta thieleana. Liebigs Ann Chem 1983:974CrossRefGoogle Scholar
  49. 49.
    Bohlmann F, Zdero C, Schmeda-Hirschmann G, Jakupovic J, Dominguez XA, King RM, Robinson H (1986) Dimeric guaianolides and other constituents from Gochnatia species. Phytochemistry 25:1175CrossRefGoogle Scholar
  50. 50.
    Morikawa T, Abdel-Halim OB, Matsuda H, Ando S, Muraoka O, Yoshikawa M (2006) Pseudoguaiane-type sesquiterpenes and inhibitors on nitric oxide production from Dichrocephala integrifolia. Tetrahedron 62:6435CrossRefGoogle Scholar
  51. 51.
    Maas M, Deters AM, Hensel A (2011) Anti-inflammatory activity of Eupatorium perfoliatum L. extracts, eupafolin, and dimeric guaianolide via iNOS inhibitory activity and modulation of inflammation-related cytokines and chemokines. J Ethnopharmacol 137:371CrossRefGoogle Scholar
  52. 52.
    Zdero C, Bohlmann F (1989) Sesquiterpene lactones and other terpenes from Geigeria species. Phytochemistry 28:3105CrossRefGoogle Scholar
  53. 53.
    Todorova M, Trendafilova A, Mikhova B, Vitkova A, Duddeck H (2007) Terpenoids from Achillea distans Waldst. & Kit. ex Willd. Biochem Syst Ecol 35:852CrossRefGoogle Scholar
  54. 54.
    Ali MS, Jahangir M, Uzair SS, Erian AW, Tareen RB (2002) Gnapholide: a new guaiac-dimer from Pulicaria gnaphalodes (Asteraceae). Nat Prod Lett 16:179CrossRefGoogle Scholar
  55. 55.
    Bohlmann F, Ahmed M, Jakupovic J, King RM, Robinson H (1983) Dimeric sesquiterpene lactones and kolavane derivatives from Gochnatia paniculata. Phytochemistry 22:191CrossRefGoogle Scholar
  56. 56.
    Tarasov VA, Kasymov SÉ, Sidyakin GP (1976) Sesquiterpene lactones of Handelia trichophylla. Chem Nat Compd 12:105CrossRefGoogle Scholar
  57. 57.
    Jakupovic J, Zdero C, Grenz M, Tsichritzis F, Lehmann L, Hashemi-Nejad SM, Bohlmann F (1989) Twenty-one acylphloroglucinol derivatives and further constituents from South African Helichrysum species. Phytochemistry 28:1119CrossRefGoogle Scholar
  58. 58.
    Martins D, Osshiro E, Roque NF, Marks V, Gottlieb HE (1998) A sesquiterpene dimer from Xylopia aromatica. Phytochemistry 48:677CrossRefGoogle Scholar
  59. 59.
    Staneva J, Trendafilova-Savkova A, Todorova MN, Evstatieva L, Vitkova A (2004) Terpenoids from Anthemis austriaca Jacq. Z Naturforsch C 59:161CrossRefGoogle Scholar
  60. 60.
    Beauhaire J, Fourrey JL, Lellemand JY, Vuilhorgne M (1981) Dimeric sesquiterpene lactone. Structure of isoabsinthin. Acid isomerization of absinthin derivatives. Tetrahedron Lett 22:2269CrossRefGoogle Scholar
  61. 61.
    Qin J-J, Jin H-Z, Huang Y, Zhang S-D, Shan L, Voruganti S, Nag S, Wang W, Zhang W-D, Zhang R (2013) Selective cytotoxicity, inhibition of cell cycle progression, and induction of apoptosis in human breast cancer cells by sesquiterpenoids from Inula lineariifolia Turcz. Eur J Med Chem 68:473CrossRefGoogle Scholar
  62. 62.
    Romo de Vivar A, Delgado G (1985) Structure and stereochemistry of mexicanin F, a novel dimeric nor-sesquiterpene lactone from Helenium mexicanum. Tetrahedron Lett 26:579CrossRefGoogle Scholar
  63. 63.
    Lee K-H, Imakura Y, Sims D, McPhail AT, Onan KD (1976) Structure and stereochemistry of microlenin, a novel antitumor dimeric sesquiterpene lactone from Helenium microcephalum; X-ray crystal structure. J Chem Soc Chem Commun:341Google Scholar
  64. 64.
    Imakura Y, Lee KH, Sims D, Hall IH (1978) Antitumor agents. XXVIII: Structural elucidation of the novel antitumor sesquiterpene lactone, microlenin, from Helenium microcephalum. J Pharm Sci 67:1228CrossRefGoogle Scholar
  65. 65.
    Imakura Y, Lee KH, Sims D, Wu RY, Hall IH, Furukawa H, Itoigawa M, Yonaha K (1980) Antitumor agents XXXVI: structural elucidation of sesquiterpene lactones microhelenins-A, B, and C, microlenin acetate, and plenolin from Helenium microcephalum. J Pharm Sci 69:1044CrossRefGoogle Scholar
  66. 66.
    Li Y, Ni Z-Y, Zhu M-C, Zhang K, Wu Y-B, Dong M, Shi Q-W, Huo C-H, Sauriol F, Kiyota H, Gu Y-C, Cong B (2012) Millifolides A-C. New 1,10-seco-guaianolides from the flowers of Achillea millefolium. Z Naturforsch B 67:438Google Scholar
  67. 67.
    Maas M, Hensel A, Batista da Costa F, Brun R, Kaiser M, Schmidt TJ (2011) An unusual dimeric guaianolide with antiprotozoal activity and further sesquiterpene lactones from Eupatorium perfoliatum. Phytochemistry 72:635CrossRefGoogle Scholar
  68. 68.
    Ahmed AA, Mahmoud AA, El-Gamal AA (1999) A xanthanolide diol and a dimeric xanthanolide from Xanthium species. Planta Med 65:470CrossRefGoogle Scholar
  69. 69.
    Ahmed AA, Jakupovic J, Bohlmann F, Regaila HA, Ahmed AM (1990) Sesquiterpene lactones from Xanthium pungens. Phytochemistry 29:2211CrossRefGoogle Scholar
  70. 70.
    Wang L, Wang J, Li F, Liu X, Chen B, Tang Y-X, Wang M-K (2013) Cytotoxic sesquiterpene lactones from aerial parts of Xanthium sibiricum. Planta Med 79:661CrossRefGoogle Scholar
  71. 71.
    Kamperdick C, Phuong NM, Van Sung TV, Adam G (2001) Guaiane dimers from Xylopia vielana. Phytochemistry 56:335CrossRefGoogle Scholar
  72. 72.
    Kamperdick C, Phuong NM, Adam G, Van Sung T (2003) Guaiane dimers from Xylopia vielana. Phytochemistry 64:811CrossRefGoogle Scholar
  73. 73.
    Zhou J, Wang J-S, Zhang Y, Wang P-R, Guo C, Kong L-Y (2012) Disesquiterpenoid and sesquiterpenes from the flos of Chrysanthemum indicum. Chem Pharm Bull 60:1067CrossRefGoogle Scholar
  74. 74.
    Kuroyanagi M, Naito H, Noro T, Ueno A, Fukushima S (1985) Furanoeremophilane-type sesquiterpenes from Cacalia adenostyloides. Chem Pharm Bull 33:4792CrossRefGoogle Scholar
  75. 75.
    Saito Y, Takashima Y, Kamada A, Suzuki Y, Suenaga M, Okamoto Y, Matsunaga Y, Hanai R, Kawahara T, Gong X, Tori M, Kuroda C (2012) Chemical and genetic diversity of Ligularia virgaurea collected in northern Sichuan and adjacent areas of China: isolation of 13 new compounds. Tetrahedron 68:10011CrossRefGoogle Scholar
  76. 76.
    Abdo S, de Bernardi M, Marinoni G, Mellerio G, Samaniego S, Vidarit G, Vita Finzit P (1992) Furanoeremophilanes and other constituents from Senecio canescens. Phytochemistry 31:3937CrossRefGoogle Scholar
  77. 77.
    Li Y-S, Li S-S, Wang Z-T, Luo S-D, Zhu D-Y (2006) A novel bieremophilanolide from Ligularia lapathifolia. Nat Prod Res 20:1241CrossRefGoogle Scholar
  78. 78.
    Wu Q-H, Wang C-M, Cheng S-G, Gao K (2004) Bieremoligularolide and eremoligularin, two novel sesquiterpenoids from Ligularia muliensis. Tetrahedron Lett 45:8855CrossRefGoogle Scholar
  79. 79.
    Huang H-L, Xu Y-J, Liu H-L, Liu X-Q, Shang J-N, Han G-T, Yao M-J, Yuan C-S (2011) Eremophilane-type sesquiterpene lactones from Ligularia hodgsonii Hook. Phytochemistry 72:514CrossRefGoogle Scholar
  80. 80.
    Liu J-Q, Zhang M, Zhang C-F, Qi H-Y, Bashall A, Bligh SWA, Wang Z-T (2008) Cytotoxic sesquiterpenes from Ligularia platyglossa. Phytochemistry 69:2231CrossRefGoogle Scholar
  81. 81.
    Kurihara T, Suzuki S (1981) Studies on the constituents of Farfugium japonicum (L.) KITAM. IV. On the components of the rhizome and the leaves. Yakugaku Zasshi 101:35Google Scholar
  82. 82.
    Bohlmann F, Le-Van N (1978) Naturally occurring terpene derivatives. Part 142. New sesqui- and diterpenes from Bedfordia salicina. Phytochemistry 17:1173CrossRefGoogle Scholar
  83. 83.
    Bohlmann F, Zdero C (1978) Naturally occurring terpene derivatives, 144. A dimeric furanoeremophilane and new cacalohastin derivatives from Senecio crispus Thunb. and Senecio macrospermus DC. Chem Ber 111:3140CrossRefGoogle Scholar
  84. 84.
    Lewis DE, Massy-Westropp RA, Ingham CF, Wells RJ (1982) The structure determination of two related eremophilone dimers. Aust J Chem 35:809CrossRefGoogle Scholar
  85. 85.
    Zhao Y, Jiang H, MacLeod M, Parsons S, Rankin DWH, Wang P, Cheng CHK, Shi H, Hao X, Guéritte F (2004) Isomeric eremophilane lactones from Senecio tsoongianus. Chem Biodivers 1:1546CrossRefGoogle Scholar
  86. 86.
    Zhao J, Wu H, Huang KX, Shi SY, Peng H, Sun XF, Chen LR, Zheng QX, Zhang QJ, Hao XJ, Stöckigt J, Li XK, Zhao Y, Qu J (2008) One chloro-furoeremophilanoid and two new natural dimers from Ligularia atroviolacea. Chin Chem Lett 19:1319CrossRefGoogle Scholar
  87. 87.
    Wang X, Sun L, Huang K, Shi S, Zhang L, Xu J, Peng H, Sun X, Wang L, Wu X, Zhao Y, Li X, Stöckigt J, Qu J (2009) Phytochemical investigation and cytotoxic evaluation of the components of the medicinal plant Ligularia atroviolacea. Chem Biodivers 6:1053CrossRefGoogle Scholar
  88. 88.
    Xie W-D, Weng C-W, Li X, Row K-H (2010) Eremophilane sesquiterpenoids from Ligularia fischeri. Helv Chim Acta 93:1983CrossRefGoogle Scholar
  89. 89.
    Xie W-D, Liu Y-H, Weng C-W, Zhao H, Row KH (2011) Fischelactone B: a new eremophilane dimer from Ligularia fischeri. J Chin Chem Soc 58:412CrossRefGoogle Scholar
  90. 90.
    Sun X-B, Xu Y-J, Qiu D-F, Yuan C-S (2007) Sesquiterpenoids from the rhizome of Ligularia virgaurea. Helv Chim Acta 90:1705CrossRefGoogle Scholar
  91. 91.
    Fei D-Q, Wu Q-H, Li S-G, Gao K (2010) Two new asymmetric sesquiterpene dimers from the rhizomes of Ligularia muliensis. Chem Pharm Bull 58:467CrossRefGoogle Scholar
  92. 92.
    Liu X, Wu Q-X, Wei X-N, Shi Y-P (2007) Novel sesquiterpenes from Ligularia virgaurea spp. oligocephala. Helv Chim Acta 90:1802CrossRefGoogle Scholar
  93. 93.
    Wu QX, Liu X, Shi YP (2005) A novel dimeric eremophilane from Ligularia virgaurea spp. oligocephala. Chin Chem Lett 16:1477Google Scholar
  94. 94.
    Lewis DE, Massy-Westropp RA, Snow MR (1979) cis, trans-Tetrahydromitchelladione. Acta Crystallogr B 35:2253CrossRefGoogle Scholar
  95. 95.
    Zhang Z-X, Wang C-M, Fei D-Q, Jia Z-J (2008) Two novel asymmetric eremophilane dimers from the roots of Ligularia virgaurea. Chem Lett 37:346CrossRefGoogle Scholar
  96. 96.
    Chen H-M, Wang B-G, Jia Z-J (1996) Novel sesquiterpenes from Ligularia virgaurea. Indian J Chem B 35B:1304Google Scholar
  97. 97.
    Wang BG, Jia ZJ (1997) A new benzofuranosesquiterpene dimer from Ligularia virgaurea. Chin Chem Lett 8:315Google Scholar
  98. 98.
    Wang BG, Jia ZJ, Yang XP (1997) Two minor benzofuranosesquiterpene dimers from Ligularia virgaurea. Planta Med 63:577CrossRefGoogle Scholar
  99. 99.
    Paula VF, Rocha ME, Barbosa LCA, Howarth OW (2006) Aquatidial, a new bis-norsesquiterpenoid from Pachira aquatica Aubl. J Braz Chem Soc 17:1443CrossRefGoogle Scholar
  100. 100.
    Nishizawa M, Inoue A, Sastrapradja S, Hayashi Y (1983) (+)-8-Hydroxycalamenene: a fish-poison principle of Dysoxylum acutangulum and D. alliaceum. Phytochemistry 22:2083CrossRefGoogle Scholar
  101. 101.
    Nishizawa M, Yamada H, Sastrapradja S, Hayashi Y (1985) Structure and synthesis of bicalamenene. Tetrahedron Lett 26:1535CrossRefGoogle Scholar
  102. 102.
    David JP, Yoshida M (1998) Bicalamenenes from Ocotea corymbosa. Rev Latinoam Quim 26:91Google Scholar
  103. 103.
    Cambie RC, Lal AR, Ahmad F (1990) Sesquiterpenes from Heritiera ornithocephala. Phytochemistry 29:2329CrossRefGoogle Scholar
  104. 104.
    El-Seedi H, Ghia F, Torssell KBG (1994) Cadinane sesquiterpenes from Siparuna marcrotepala. Phytochemistry 35:1495CrossRefGoogle Scholar
  105. 105.
    He L, Hou J, Gan M, Shi J, Chantrapromma S, Fun H-K, Williams ID, Sung HHY (2008) Cadinane sesquiterpenes from the leaves of Eupatorium adenophorum. J Nat Prod 71:1485CrossRefGoogle Scholar
  106. 106.
    Delgado G, del Socorro OM, Chávez MI, Ramírez-Apan T, Linares E, Bye R, Espinosa-García FJ (2001) Antiinflammatory constituents from Heterotheca inuloides. J Nat Prod 64:861CrossRefGoogle Scholar
  107. 107.
    Stipanovic RD, Bell AA, Mace ME, Howell CR (1975) Antimicrobial terpenoids of Gossypium: 6-methoxygossypol and 6,6′-dimethoxygossypol. Phytochemistry 14:1077CrossRefGoogle Scholar
  108. 108.
    Triplett BA, Moss SC, Bland JM, Dowd MK, Phillips GC (2008) Induction of hairy root cultures from Gossypium hirsutum and Gossypium barbadense to produce gossypol and related compounds. In Vitro Cell Dev Biol Plant 44:508CrossRefGoogle Scholar
  109. 109.
    Jagt DLV, Deck LM, Royer RE (2000) Gossypol prototype of inhibitors targeted to dinucleotide folds. Curr Med Chem 7:479CrossRefGoogle Scholar
  110. 110.
    Takahashi M, Koyano T, Kowithayakorn T, Hayashi M, Komiyama K, Ishibashi M (2003) Parviflorene A, a novel cytotoxic unsymmetrical sesquiterpene-dimer constituent from Curcuma parviflora. Tetrahedron Lett 44:2327CrossRefGoogle Scholar
  111. 111.
    Ishibashi M, Ohtsuki T (2008) Studies on search for bioactive natural products targeting TRAIL signaling leading to tumor cell apoptosis. Med Res Rev 28:688CrossRefGoogle Scholar
  112. 112.
    Toume K, Takahashi M, Yamaguchi K, Koyano T, Kowithayakorn T, Hayashi M, Komiyama K, Ishibashi M (2004) Parviflorenes B-F, novel cytotoxic unsymmetrical sesquiterpene-dimers with three backbone skeletons from Curcuma parviflora. Tetrahedron 60:10817CrossRefGoogle Scholar
  113. 113.
    Toume K, Sato M, Koyano T, Kowithayakorn T, Yamori T, Ishibashi M (2005) Cytotoxic dimeric sesquiterpenoids from Curcuma parviflora: isolation of three new parviflorenes and absolute stereochemistry of parviflorenes A, B, D, F, and G. Tetrahedron 61:6700CrossRefGoogle Scholar
  114. 114.
    Jiang H-L, Chen J, Jin X-J, Yang J-L, Li Y, Yao X-J, Wu Q-X (2011) Sesquiterpenoids, alantolactone analogues, and seco-guaiene from the roots of Inula helenium. Tetrahedron 67:9193CrossRefGoogle Scholar
  115. 115.
    Lin Y, Jin T, Wu X, Huang Z, Fan J, Chan WL (1997) A novel bisesquiterpenoid, biatractylolide, from the Chinese herbal plant Atractylodes macrocephala. J Nat Prod 60:27CrossRefGoogle Scholar
  116. 116.
    Rosquete C, Del Olmo E, Sanz F, San Feliciano A (2002) The crystal structure of biatractylolide, an 8,8′ (C-C) linked dimeric 12,8-eudesmanolide from the resin of Trattinickia rhoifolia Willd. Chem Pharm Bull 50:964CrossRefGoogle Scholar
  117. 117.
    Wang B-D, Yu Y-H, Teng N-N, Jiang S-H, Zhu D-Y (1999) Structural elucidation of biepiasterolide. Huaxue Xuebao 57:1022Google Scholar
  118. 118.
    Rosquete C, Del Olmo E, Del Corral JMM, Lopez JL, Gordaliza M, San Feliciano A (2010) Eudesmanolides and other terpenoids from Trattinickia rhoifolia. Adv Quim 5:123Google Scholar
  119. 119.
    Kouno I, Hirai A, Jiang Z, Tanaka T (1997) Bisesquiterpenoid from the root of Lindera strychnifolia. Phytochemistry 46:1283Google Scholar
  120. 120.
    Matusch R, Haeberlein H (1987) Novel bissesquiterpene lactones from Helenium autumnale L. Liebigs Ann Chem 1987:455CrossRefGoogle Scholar
  121. 121.
    Somwong P, Suttisri R, Buakeaw A (2013) New sesquiterpenes and phenolic compound from Ficus foveolata. Fitoterapia 85:1CrossRefGoogle Scholar
  122. 122.
    Jakupovic J, Schuster A, Bohlmann F, Dillon MO (1988) Lumiyomogin, ferreyrantholide, fruticolide and other sesquiterpene lactones from Ferreyranthus fruticosus. Phytochemistry 27:1113CrossRefGoogle Scholar
  123. 123.
    Quijano L, Gómez-Garibay F, Trejo RBIB, Rios T (1991) Hydroxy-bis-dihydroencelin, a dimeric eudesmanolide and other eudesmanolides from Montanoa speciosa. Phytochemistry 30:3293CrossRefGoogle Scholar
  124. 124.
    Kraut L, Mues R, Sim-Sim M (1994) Sesquiterpene lactones and 3-benzylphthalides from Frullania muscicola. Phytochemistry 37:1337CrossRefGoogle Scholar
  125. 125.
    Zhang M, Iinuma M, Wang J-S, Oyama M, Ito T, Kong L-Y (2012) Terpenoids from Chloranthus serratus and their anti-inflammatory activities. J Nat Prod 75:694CrossRefGoogle Scholar
  126. 126.
    Sun C-L, Yan H, Li X-H, Zheng X-F, Liu H-Y (2012) Terpenoids from Chloranthus elatior. Nat Prod Bioprospect 2:156CrossRefGoogle Scholar
  127. 127.
    Ran X-H, Teng F, Chen C-X, Wei G, Hao X-J, Liu H-Y (2010) Chloramultiols A-F, lindenane-type sesquiterpenoid dimers from Chloranthus multistachys. J Nat Prod 73:972CrossRefGoogle Scholar
  128. 128.
    Liu H-Y, Ran X-H, Gong N-B, Ni W, Qin X-J, Hou Y-Y, Lu Y, Chen C-X (2013) Sesquiterpenoids from Chloranthus multistachys. Phytochemistry 88:112CrossRefGoogle Scholar
  129. 129.
    Zhang M, Wang J-S, Oyama M, Luo J, Guo C, Ito T, Iinuma M, Kong L-Y (2012) Anti-inflammatory sesquiterpenes and sesquiterpene dimers from Chloranthus fortunei. J Asian Nat Prod Res 14:708CrossRefGoogle Scholar
  130. 130.
    Zhang S, Yang S-P, Yuan T, Lin B-D, Wu Y, Yue J-M (2010) Multistalides A and B, two novel sesquiterpenoid dimers from Chloranthus multistachys. Tetrahedron Lett 51:764CrossRefGoogle Scholar
  131. 131.
    He X-F, Yin S, Ji Y-C, Su Z-S, Geng M-Y, Yue J-M (2010) Sesquiterpenes and dimeric sesquiterpenoids from Sarcandra glabra. J Nat Prod 73:45CrossRefGoogle Scholar
  132. 132.
    Ni G, Zhang H, Liu H-C, Yang S-P, Geng M-Y, Yue J-M (2013) Cytotoxic sesquiterpenoids from Sarcandra glabra. Tetrahedron 69:564CrossRefGoogle Scholar
  133. 133.
    He X-F, Zhang S, Zhu R-X, Yang S-P, Yuan T, Yue J-M (2011) Sarcanolides A and B: two sesquiterpenoid dimers with a nonacyclic scaffold from Sarcandra hainanensis. Tetrahedron 67:3170CrossRefGoogle Scholar
  134. 134.
    Yang S, Chen H, Yue J (2012) Sesquiterpenoids from Chloranthus spicatus. Chin J Chem 30:1243CrossRefGoogle Scholar
  135. 135.
    Kwon SW, Kim YK, Kim JY, Ryu HS, Lee HK, Kang JS, Kim HM, Hong JT, Kim Y, Han S-B (2011) Evaluation of immunotoxicity of shizukaol B isolated from Chloranthus japonicus. Biomol Ther 19:59CrossRefGoogle Scholar
  136. 136.
    Kim S-Y, Kashiwada Y, Kawazoe K, Murakami K, Sun H-D, Li S-L, Takaishi Y (2011) Spicachlorantins G-J, new lindenane sesquiterpenoid dimers from the roots of Chloranthus spicatus. Chem Pharm Bull 59:1281CrossRefGoogle Scholar
  137. 137.
    Yoyota M, Koyama H, Asakawa Y (1997) Sesquiterpenoids from the three Japanese liverworts Lejeunea aquatica, L. flava and L. japonica. Phytochemistry 46:145CrossRefGoogle Scholar
  138. 138.
    Su B-N, Zhu Q-X, Jia Z-J (1999) Aquaticol, a novel bis-sesquiterpene from Veronica anagallis-aquatica. Tetrahedron Lett 40:357CrossRefGoogle Scholar
  139. 139.
    Su B-N, Yang L, Gao K, Jia Z-J (2000) Aquaticol, a bis-sesquiterpene and iridoid glucosides from Veronica anagallis-aquatica. Planta Med 66:281CrossRefGoogle Scholar
  140. 140.
    Shizuri Y, Yamada K (1985) Laurebiphenyl, a dimeric sesquiterpene of the cyclolaurane-type from the red alga Laurencia nidifica. Phytochemistry 24:1385CrossRefGoogle Scholar
  141. 141.
    Irita H, Hashimoto T, Fukuyama Y, Asakawa T (2000) Herbertane-type sesquiterpenoids from the liverwort Herbertus sakuraii. Phytochemistry 55:247CrossRefGoogle Scholar
  142. 142.
    Matsuo A, Yuki S, Nakayama M, Hayashi S (1982) Three new sesquiterpene phenols of the ent-herbertane class from the liverwort Herberta adunca. Chem Lett 11:463CrossRefGoogle Scholar
  143. 143.
    Fukuyama Y, Asakawa Y (1991) Novel neurotrophic isocuparane-type sesquiterpene dimers, mastigophorenes A, B, C and D, isolated from the liverwort Mastigophora diclados. J Chem Soc Perkin Trans 1:2737CrossRefGoogle Scholar
  144. 144.
    Fukuyama Y, Toyota M, Asakawa Y (1988) Mastigophorenes: novel dimeric isocuprane-type sesquiterpenoids from the liverwort Mastigophora diclados. J Chem Soc Chem Commun 1988:1341CrossRefGoogle Scholar
  145. 145.
    Kladi M, Xenaki H, Vagias C, Papazafiri P, Roussis V (2006) New cytotoxic sesquiterpenes from the red algae Laurencia obtusa and Laurencia microcladia. Tetrahedron 62:182CrossRefGoogle Scholar
  146. 146.
    Kladi M, Vagias C, Papazafiri P, Furnari G, Serio D, Roussis V (2007) New sesquiterpenes from the red alga Laurencia microcladia. Tetrahedron 63:7606CrossRefGoogle Scholar
  147. 147.
    Bokesch HR, Blunt JW, Westergaard CK, Cardellina JH II, Johnson TR, Michael JA, McKee TC, Hollingshead MG, Boyd MR (1999) Alertenone, a dimer of suberosenone from Alertigorgia sp. J Nat Prod 62:633CrossRefGoogle Scholar
  148. 148.
    Kanokmedhakul S, Lekphrom R, Kanokmedhakul K, Hahnvajanawong C, Bua-art S, Saksirirat W, Prabpai S, Kongsaeree P (2012) Cytotoxic sesquiterpenes from luminescent mushroom Neonothopanus nambi. Tetrahedron 68:8261CrossRefGoogle Scholar
  149. 149.
    Hashimoto T, Irita H, Tanaka M, Takaoka S, Asakawa Y (1998) Two novel Diels-Alder reaction-type dimeric pinguisane sesquiterpenoids and related compounds from the liverwort Porella acutifolia subsp. tosana. Tetrahedron Lett 39:2977CrossRefGoogle Scholar
  150. 150.
    Bohlmann F, Singh P, Jakupovic J (1982) Naturally occurring terpene derivatives. Part 429. Sesquiterpenes and a dimeric spiroketone from Cineraria fruticulorum. Phytochemistry 21:2531CrossRefGoogle Scholar
  151. 151.
    Takaoka D, Kouyama N, Tani H, Matsuo A (1991) Structures of three novel dimeric sesquiterpenoids from the liverwort Mylia taylorii. J Chem Res (S):180Google Scholar
  152. 152.
    Rasser F, Anke T, Sterner O (2002) Terpenoids from Bovista sp. 96042. Tetrahedron 58:7785CrossRefGoogle Scholar
  153. 153.
    Harinantenaina L, Asakawa Y, De Clercq E (2007) Cinnamacrins A-C, cinnafragrin D, and cytostatic metabolites with α-glucosidase inhibitory activity from Cinnamosma macrocarpa. J Nat Prod 70:277CrossRefGoogle Scholar
  154. 154.
    Hori K, Satake T, Saiki Y, Murakami T, Chen C-M (1988) Chemical and chemotaxonomical studies of Fillices. LXXV. Chemical studies on the constituents of Dennstaedtia distenta MOORE. (1). Yakugaku Zasshi 108:422Google Scholar
  155. 155.
    Hori K, Satake T, Yabuuchi M, Saiki Y, Murakami T, Chen CM (1987) Chemical and chemotaxonomical studies of filices. LXVIII. The distribution of sesquiterpene dimers ‘Monachosorins’ and its chemotaxonomic implication. Yakugaku Zasshi 107:485Google Scholar
  156. 156.
    Satake T, Murakami T, Yokote N, Saiki Y, Chen C (1985) Chemical and chemotaxonomical studies on filices. LVIII. Chemical studies on the constituents of Monachosorum arakii TAGAWA (Pteridaceae). Chem. Pharm Bull 33:4175CrossRefGoogle Scholar
  157. 157.
    Epstein WW, Sweat FW, VanLear G, Lovell FM, Gabe EJ (1979) Structure and stereochemistry of officinalic acid, a novel triterpene from Fomes officinalis. J Am Chem Soc 101:2748CrossRefGoogle Scholar
  158. 158.
    Erb B, Borschberg H-J, Arigoni D (2000) The structure of laricinolic acid and its biomimetic transformation into officinalic acid. J Chem Soc Perkin Trans 1:2307CrossRefGoogle Scholar
  159. 159.
    Guella G, Dini F, Pietra F (1999) Metaboliten aus marinen Ciliaten mit einem neuartigen C30-Rückgrat. Angew Chem 111:1217CrossRefGoogle Scholar
  160. 160.
    Isaka M, Srisanoh U, Choowong W, Boonpratuang T (2011) Sterostreins A–E, new terpenoids from cultures of the Basidiomycete Stereum ostrea BCC 22955. Org Lett 13:4886CrossRefGoogle Scholar
  161. 161.
    Jin HZ, Lee D, Lee JH, Lee K, Hong Y-S, Choung D-H, Kim YH, Lee JJ (2006) New sesquiterpene dimers from Inula britannica inhibit NF-κB activation and NO and TNF-α production in LPS-stimulated RAW264.7 cells. Planta Med 72:40CrossRefGoogle Scholar
  162. 162.
    Zhu JX, Qin JJ, Jin HZ, Zhang WD (2013) Japonicones Q-T, four new dimeric sesquiterpene lactones from Inula japonica Thunb. Fitoterapia 84:40CrossRefGoogle Scholar
  163. 163.
    Qin JJ, Jin HZ, Fu JJ, Hu XJ, Wang Y, Yan SK, Zhang WD (2009) Japonicones A-D, bioactive dimeric sesquiterpenes from Inula japonica Thunb. Bioorg Med Chem Lett 19:710CrossRefGoogle Scholar
  164. 164.
    Qin JJ, Jin HZ, Zhu JX, Fu JJ, Hu XJ, Liu XH, Zhu Y, Yan SK, Zhang WD (2010) Japonicones E-L, dimeric sesquiterpene lactones from Inula japonica Thunb. Planta Med 76:278CrossRefGoogle Scholar
  165. 165.
    Qin JJ, Wang LY, Zhu JX, Jin HZ, Fu JJ, Liu XF, Li HL, Zhang WD (2011) Neojaponicone A, a bioactive sesquiterpene lactone dimer with an unprecedented carbon skeleton from Inula japonica. Chem Commun 47:1222CrossRefGoogle Scholar
  166. 166.
    Sun C-M, Syu W Jr, Don M-J, Lu J-J, Lee G-H (2003) Cytotoxic sesquiterpene lactones from the root of Saussurea lappa. J Nat Prod 66:1175CrossRefGoogle Scholar
  167. 167.
    Qin J-J, Huang Y, Wang D, Cheng X-R, Zeng Q, Zhang S-D, Hu Z-L, Jin H-Z, Zhang W-D (2012) Lineariifolianoids A-D, rare unsymmetrical sesquiterpenoid dimers comprised of xanthane and guaiane framework units from Inula lineariifolia. RSC Adv 2:1307CrossRefGoogle Scholar
  168. 168.
    Fu B, Su B-N, Takaishi Y, Honda G, Ito M, Takeda Y, Kodzhimatov OK, Ashurmetov O (2001) A bis-sesquiterpene and sesquiterpenolides from Inula macrophylla. Phytochemistry 58:1121CrossRefGoogle Scholar
  169. 169.
    Su B-N, Takaishi Y, Tori M, Takaoka S, Honda G, Itoh M, Takeda Y, Kodzhimatov OK, Ashurmetov O (2000) Macrophyllidimers A and B, two novel sesquiterpene dimers from the bark of Inula macrophylla. Tetrahedron Lett 41:1475CrossRefGoogle Scholar
  170. 170.
    Jakupovic J, Jia Y, King RM, Bohlmann F (1986) Rudbeckiolide, a dimeric sesquiterpene lactone from Rudbeckia laciniata. Liebigs Ann Chem 1986:1474CrossRefGoogle Scholar
  171. 171.
    Yuan T, Zhu R-X, Yang S-P, Zhang H, Zhang C-R, Yue J-M (2012) Serratustones A and B representing a new dimerization pattern of two types of sesquiterpenoids from Chloranthus serratus. Org Lett 14:3198CrossRefGoogle Scholar
  172. 172.
    Nagashima F, Murakami M, Takaoka S, Asakawa Y (2004) New sesquiterpenoids from the New Zealand liverwort Chiloscyphus subporosus. Chem Pharm Bull 52:949CrossRefGoogle Scholar
  173. 173.
    Cherney EC, Baran PS (2011) Terpenoid-alkaloids: their biosynthetic twist of fate and total synthesis. Isr J Chem 51:391CrossRefGoogle Scholar
  174. 174.
    Seigler D (1998) Alkaloids of terpenoid origin (excepting indole alkaloids and ergot alkaloids). In: Seigler D (ed) Plant secondary metabolism. Kluwer, New York, p 668CrossRefGoogle Scholar
  175. 175.
    Gao HY, Wu LJ, Muto N, Fuchino H, Nakane T, Shirota O, Sano T, Kuroyanagi M (2008) Beyerane derivatives and a sesquiterpene dimer from Japanese cypress (Chamaecyparis obtusa). Chem Pharm Bull 56:1030CrossRefGoogle Scholar
  176. 176.
    Liermann JC, Schüffler A, Wollinsky B, Birnbacher J, Kolshorn H, Anke T, Opatz T (2010) Hirsutane-type sesquiterpenes with uncommon modifications from three Basidiomycetes. J Org Chem 75:2955CrossRefGoogle Scholar
  177. 177.
    Ksebati MB, Schmitz FJ (1988) Sesquiterpene furans and thiosesquiterpenes from the nudibranch Ceratosoma brevicaudatum. J Nat Prod 51:857CrossRefGoogle Scholar
  178. 178.
    Opatz T, Kolshorn H, Birnbacher J, Schüffler A, Deininger F, Anke T (2007) The creolophins: a family of linear triquinanes from Creolophus cirrhatus (Basidiomycete). Eur J Org Chem 2007:5546CrossRefGoogle Scholar
  179. 179.
    Fiorentino A, DellaGreca M, D’Abrosca B, Golino A, Pacifico S, Izzo A, Monaco P (2006) Unusual sesquiterpene glucosides from Amaranthus retroflexus. Tetrahedron 62:8952CrossRefGoogle Scholar
  180. 180.
    Chen Y, Bean MF, Chambers C, Francis T, Huddleston MJ, Offen P, Westley JW, Carté, Timmermann BN (1991) Arrivacins, novel pseudoguaianolide esters with potent angiotensin II binding activity from Ambrosia psilostachya. Tetrahedron 47:4869CrossRefGoogle Scholar
  181. 181.
    Wang S, Li J, Sun J, Zeng K-W, Cui J-R, Jiang Y, Tu P-F (2013) NO inhibitory guaianolide-derived terpenoids from Artemisia argyi. Fitoterapia 85:169CrossRefGoogle Scholar
  182. 182.
    Sullivan BW, Faulkner DJ, Okamoto KT, Chen MHM, Clardy J (1986) (6R,7S)-7-Amino-7,8-dihydro-α-bisabolene, an antimicrobial metabolite from the marine sponge Halichondria sp. J Org Chem 51:5134CrossRefGoogle Scholar
  183. 183.
    Satitpatipan V, Suwanborirux K (2004) New nitrogenous germacranes from a Thai marine sponge, Axinyssa n. sp. J Nat Prod 67:503CrossRefGoogle Scholar
  184. 184.
    Ruangrungsi N, Likhitwitayawuid K, Kasiwong S, Lange GL, Decicco CP (1988) Constituents of Michelia rajaniana. Two new germacranolide amides. J Nat Prod 51:1220CrossRefGoogle Scholar
  185. 185.
    Ruangrungsi N, Rivepiboon A, Lange GL, Lee M, Decicco CP, Picha P, Preechanukool K (1987) Constituents of Paramichelia baillonii: a new antitumor germacranolide alkaloid. J Nat Prod 50:891CrossRefGoogle Scholar
  186. 186.
    Mahmoud II, Kinghorn AD, Cordell GA, Farnsworth NR (1980) Potential anticancer agents. XVI. Isolation of bicyclofarnesane sesquiterpenoids from Capsicodendron dinisii. J Nat Prod 43:365CrossRefGoogle Scholar
  187. 187.
    Kuo Y-H, Chen W-C (1994) Chinensiol, a new dimeric himachalane-type sesquiterpene from the root of Juniperus chinensis Linn. Chem Pharm Bull 42:2187CrossRefGoogle Scholar
  188. 188.
    Harinantenaina L, Takaoka S (2006) Cinnafragrins A-C, dimeric and trimeric drimane sesquiterpenoids from Cinnamosma fragrans, and structure revision of capsicodendrin. J Nat Prod 69:1193CrossRefGoogle Scholar
  189. 189.
    Zdero C, Ahmed AA, Bohlmann F, Mungai GM (1990) Diterpenes and sesquiterpene xylosides from East African Conyza species. Phytochemistry 29:3167CrossRefGoogle Scholar
  190. 190.
    Castro V, Murillo R, Klaas CA, Meunier C, Mora G, Pahl HL, Merfort I (2000) Inhibition of the transcription factor NF-κB by sesquiterpene lactones from Podachaenium eminens. Planta Med 66:591CrossRefGoogle Scholar
  191. 191.
    Song Q, Gomez-Barrios ML, Fronczek FR, Vargas D, Thien LB, Fischer NH (1998) Sesquiterpenes from southern Magnolia virginiana. Phytochemistry 47:221CrossRefGoogle Scholar
  192. 192.
    Takahashi H, Toyota M, Asakawa Y (1993) Drimane-type sesquiterpenoids from Cryptoporus volvatus infected by Paecilomyces varioti. Phytochemistry 33:1055CrossRefGoogle Scholar
  193. 193.
    Hashimoto T, Tori M, Mizuno Y, Asakawa Y, Fukazawa Y (1989) The superoxide release inhibitors, cryptoporic acids C, D, and E; dimeric drimane sesquiterpenoid ethers of isocitric acid from the fungus Cryptoporus volvatus. J Chem Soc Chem Commun 1989:258CrossRefGoogle Scholar
  194. 194.
    Asakawa Y, Hashimoto T, Mizuno Y, Tori M, Fukazawa Y (1992) Cryptoporic acids A-G, drimane-type sesquiterpenoid ethers of isocitric acid from the fungus Cryptoporus volvatus. Phytochemistry 31:579CrossRefGoogle Scholar
  195. 195.
    Meng J, Li Y-Y, Ou Y-X, Song L-F, Lu C-H, Shen Y-M (2011) New sesquiterpenes from Marasmius cladophyllus. Mycology 2:30CrossRefGoogle Scholar
  196. 196.
    Asakawa Y (2004) Chemosystematics of the Hepaticae. Phytochemistry 65:623CrossRefGoogle Scholar
  197. 197.
    Bohlmann F, Gupta RK, Jakupovic J (1982) A further sesquiterpene lactone esterified with a sesquiterpenic acid. Phytochemistry 21:460CrossRefGoogle Scholar
  198. 198.
    Zhang Q, Mandi A, Li S, Chen Y, Zhang W, Tian X, Zhang H, Li H, Zhang W, Zhang S, Ju J, Kurtan T, Zhang C (2012) N-N-coupled indolo-sesquiterpene atropo-diastereomers from a marine-derived actinomycete. Eur J Org Chem 2012:5256CrossRefGoogle Scholar
  199. 199.
    Ishiyama H, Hashimoto A, Fromont J, Hoshino Y, Mikami Y, Ji K (2005) Halichonadins A-D, new sesquiterpenoids from a sponge Halichondria sp. Tetrahedron 61:1101CrossRefGoogle Scholar
  200. 200.
    Kozawa S, Ishiyama H, Fromont J, Ji K (2008) Halichonadin E, a dimeric sesquiterpenoid from the sponge Halichondria sp. J Nat Prod 71:445CrossRefGoogle Scholar
  201. 201.
    Suto S, Tanaka N, Fromont J, Ji K (2011) Halichonadins G-J, new sesquiterpenoids from a sponge Halichondria sp. Tetrahedron Lett 52:3470CrossRefGoogle Scholar
  202. 202.
    Tanaka N, Suto S, Ishiyama H, Kubota T, Yamano A, Shiro M, Fromont J, Ji K (2012) Halichonadins K and L, new dimeric sesquiterpenoids from a sponge Halichondria sp. Org Lett 14:3498CrossRefGoogle Scholar
  203. 203.
    Morita Y, Hayashi Y, Sumi Y, Kodaira A, Shibata H (1995) Studies on chemical components of mushrooms, Part VI. Haploporic acid A, a novel dimeric drimane sesquiterpenoid from the basidiomycete Haploporus odorus. Biosci Biotechnol Biochem 59:2008CrossRefGoogle Scholar
  204. 204.
    Herz W, Gage D, Kumar N (1981) Damsinic acid and ambrosanolides from vegetative Ambrosia hispida. Phytochemistry 20:1601CrossRefGoogle Scholar
  205. 205.
    Zidorn C, Ellmerer-Müller EP, Stuppner H (1998) Guaian-5,12-olides from Leontodon hispidus. Phytochemistry 49:797CrossRefGoogle Scholar
  206. 206.
    Bohlmann F, Jakupovic J, Abraham W-R, Zdero C (1981) The first sesquiterpene lactones esterified with a sesquiterpenic acid. Phytochemistry 20:2371CrossRefGoogle Scholar
  207. 207.
    Hou C-C, Lin S-J, Cheng J-T, Hsu F-L (2003) Antidiabetic dimeric guianolides and a lignan glycoside from Lactuca indica. J Nat Prod 66:625CrossRefGoogle Scholar
  208. 208.
    Fu B, Zhu QX, Yang XP, Jia ZJ (2002) A new bisesquiterpene from Ligularia macrophylla. Chin Chem Lett 13:249Google Scholar
  209. 209.
    Ortega A, Maldonado RATE (1998) A costic acid guaianyl ester and other constituents of Podachaenium eminens. Phytochemistry 49:1085CrossRefGoogle Scholar
  210. 210.
    Nozoe S, Agatsuma T, Takahashi A, Ohishi H, In Y, Kusano G (1993) Roseolide A, a novel dimeric drimane sesquiterpenoid from the basidiomycete Roseoformes subflexibilis. Tetrahedron Lett 34:2497CrossRefGoogle Scholar
  211. 211.
    Liu Y, Nugroho AE, Hirasawa Y, Nakata A, Kaneda T, Uchiyama N, Goda Y, Shirota O, Morita H, Aisa HA (2010) Vernodalidimers A and B, novel orthoester elemanolide dimers from seeds of Vernonia anthelmintica. Tetrahedron Lett 51:6584CrossRefGoogle Scholar
  212. 212.
    Zhang Z-X, Fei D-Q, Jia Z-J (2008) Virgaurols A-D: novel asymmetric eremophilane dimers from the roots of Ligularia virgaurea. Bull Chem Soc Jpn 81:1007CrossRefGoogle Scholar
  213. 213.
    Kawabata J, Mizutani J (1992) Studies on the chemical constituents of Chloranthaceae plants. Part 8. Dimeric sesquiterpenoid esters from Chloranthus serratus. Phytochemistry 31:1293CrossRefGoogle Scholar
  214. 214.
    Ye J, Qin J-J, Su J, Lin S, Huang Y, Jin H-Z, Zhang W-D (2013) Identification and structural characterization of dimeric sesquiterpene lactones in Inula japonica Thunb. by high-performance liquid chromatography/electrospray ionization with multi-stage mass spectrometry. Rapid Commun Mass Spectrom 27:2159CrossRefGoogle Scholar
  215. 215.
    Alkorta I, Elguero J (2010) Computational NMR spectroscopy. In: Grunenberg J (ed) Computational spectroscopy. Wiley-VCH, Weinheim, p 37CrossRefGoogle Scholar
  216. 216.
    Lodewyk MW, Siebert MR, Tantillo DJ (2011) Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem Rev 112:1839CrossRefGoogle Scholar
  217. 217.
    Nicolaou KC, Ortiz A, Zhang H, Dagneau P, Lanver A, Jennings MP, Arseniyadis S, Faraoni R, Lizos DE (2010) Total synthesis and structural revision of vannusals A and B: synthesis of the originally assigned structure of vannusal B. J Am Chem Soc 132:7138CrossRefGoogle Scholar
  218. 218.
    Nicolaou KC, Zhang H, Ortiz A, Dagneau P (2008) Total synthesis of the originally assigned structure of vannusal B. Angew Chem Int Ed Engl 47:8605CrossRefGoogle Scholar
  219. 219.
    Nicolaou KC, Ortiz A, Zhang H (2009) The true structures of the vannusals, Part 2: Total synthesis and revised structure of vannusal B. Angew Chem Int Ed Engl 48:5648CrossRefGoogle Scholar
  220. 220.
    Saielli G, Nicolaou KC, Ortiz A, Zhang H, Bagno A (2011) Addressing the stereochemistry of complex organic molecules by density functional theory-NMR: vannusal B in retrospective. J Am Chem Soc 133:6072CrossRefGoogle Scholar
  221. 221.
    Yang S-P, Gao Z-B, Wang F-D, Liao S-G, Chen H-D, Zhang C-R, Hu G-Y, Yue J-M (2007) Chlorahololides A and B, two potent and selective blockers of the potassium channel isolated from Chloranthus holostegius. Org Lett 9:903CrossRefGoogle Scholar
  222. 222.
    Xu Y-J, Tang C-P, Ke C-Q, Zhang J-B, Weiss H-C, Gesing E-R, Ye Y (2007) Mono- and di-sesquiterpenoids from Chloranthus spicatus. J Nat Prod 70:1987CrossRefGoogle Scholar
  223. 223.
    Hashimoto T, Irita H, Tanaka M, Takaoka S, Asakawa Y (2000) Pinguisane and dimeric pinguisane-type sesquiterpenoids from the Japanese liverwort Porella acutifolia subsp. tosana. Phytochemistry 53:593CrossRefGoogle Scholar
  224. 224.
    Song Q, Gomez-Barrios ML, Fronczek FR, Vargas D, Thien LB, Fischer NH (1997) Sesquiterpenes from southern Magnolia virginiana. Phytochemistry 47:221CrossRefGoogle Scholar
  225. 225.
    Ibragimov BT, Talipov SA, Dadabaev BN, Nazarov GB, Aripov TF (1988) X-ray structural investigation of gossypol and its derivatives. X. Unusual inclusion compounds based on gossypol. Khim Prir Soedin:675Google Scholar
  226. 226.
    Kim S-Y, Kashiwada Y, Kawazoe K, Murakami K, Sun H-D, Li S-L, Takaishi Y (2009) Spicachlorantins C-F, hydroperoxy dimeric sesquiterpenes from the roots of Chloranthus spicatus. Tetrahedron Lett 50:6032CrossRefGoogle Scholar
  227. 227.
    Kim S-Y, Kashiwada Y, Kawazoe K, Murakami K, Sun H-D, Li S-L, Takaishi Y (2009) Spicachlorantins A and B, new dimeric sesquiterpenes from the roots of Chloranthus spicatus. Phytochem Lett 2:110CrossRefGoogle Scholar
  228. 228.
    Yang S-P, Gao Z-B, Wu Y, Hu G-Y, Yue J-M (2008) Chlorahololides C-F: a new class of potent and selective potassium channel blockers from Chloranthus holostegius. Tetrahedron 64:2027CrossRefGoogle Scholar
  229. 229.
    Di Bari L, Pescitelli G (2010) Electronic circular dichroism. In: Grunenberg J (ed) Computational spectroscopy. Wiley-VCH, Weinheim, p 241CrossRefGoogle Scholar
  230. 230.
    Kong L-Y, Wang P (2013) Determination of the absolute configuration of natural products. Chin J Nat Med 11:193CrossRefGoogle Scholar
  231. 231.
    Kusano G, Abe M, Koike Y, Uchida M, Nozoe S, Taira Z (1991) Studies on the constituents of Chloranthus spp. Further studies on the constituents of Chloranthus japonicus. Yakugaku Zasshi 111:756Google Scholar
  232. 232.
    Li C, Dian L, Zhang W, Lei X (2012) Biomimetic syntheses of (−)-gochnatiolides A-C and (−)-ainsliadimer B. J Am Chem Soc 134:12414CrossRefGoogle Scholar
  233. 233.
    Chen QF, Liu ZP, Wang FP (2011) Natural sesquiterpenoids as cytotoxic anticancer agents. Mini Rev Med Chem 11:1153CrossRefGoogle Scholar
  234. 234.
    Nie L-Y, Qin J-J, Huang Y, Yan L, Liu Y-B, Pan Y-X, Jin H-Z, Zhang W-D (2010) Sesquiterpenoids from Inula lineariifolia inhibit nitric oxide production. J Nat Prod 73:1117CrossRefGoogle Scholar
  235. 235.
    Sultana N, Saeed Saify Z (2012) Naturally occurring and synthetic agents as potential anti-inflammatory and immunomodulants. Antiinflamm Antiallergy Agents Med Chem 11:3CrossRefGoogle Scholar
  236. 236.
    Jung M, Lee K, Kim H, Park M (2004) Recent advances in artemisinin and its derivatives as antimalarial and antitumor agents. Curr Med Chem 11:1265CrossRefGoogle Scholar
  237. 237.
    Lai H, Singh N, Sasaki T (2013) Development of artemisinin compounds for cancer treatment. Invest New Drugs 31:230CrossRefGoogle Scholar
  238. 238.
    He R, Mott BT, Rosenthal AS, Genna DT, Posner GH, Arav-Boger R (2011) An artemisinin-derived dimer has highly potent anti-cytomegalovirus (CMV) and anti-cancer activities. PLoS One 6:e24334CrossRefGoogle Scholar
  239. 239.
    Singh NP, Lai HC, Park JS, Gerhardt TE, Kim BJ, Wang S, Sasaki T (2011) Effects of artemisinin dimers on rat breast cancer cells in vitro and in vivo. Anticancer Res 31:4111Google Scholar
  240. 240.
    Chaturvedi D, Goswami A, Pratim Saikia P, Barua NC, Rao PG (2010) Artemisinin and its derivatives: a novel class of anti-malarial and anti-cancer agents. Chem Soc Rev 39:435CrossRefGoogle Scholar
  241. 241.
    Njuguna NM, Ongarora DSB, Chibale K (2012) Artemisinin derivatives: a patent review (2006—present). Expert Opin Ther Pat 22:1179CrossRefGoogle Scholar
  242. 242.
    Hall IH, Lee KH, Imakura Y, Sims D (1983) Antitumor agents. LXIII: The effects of microlenin on nucleic acid and protein syntheses of Ehrlich ascites cells. J Pharm Sci 72:1008CrossRefGoogle Scholar
  243. 243.
    Tamaki M, Sadhu SK, Ohtsuki T, Toume K, Koyano T, Kowithayakorn T, Hayashi M, Komiyama K, Ishibashi M (2007) Parviflorene J, a cytotoxic sesquiterpene dimer with a new rearranged skeleton from Curcuma parviflora. Heterocycles 72:649CrossRefGoogle Scholar
  244. 244.
    Ohtsuki T, Tamaki M, Toume K, Ishibashi M (2008) A novel sesquiterpenoid dimer parviflorene F induces apoptosis by up-regulating the expression of TRAIL-R2 and a caspase-dependent mechanism. Bioorg Med Chem 16:1756CrossRefGoogle Scholar
  245. 245.
    Kwon OE, Lee HS, Lee SW, Bae K, Kim K, Hayashi M, Rho M-C, Kim Y-K (2006) Dimeric sesquiterpenoids isolated from Chloranthus japonicus inhibited the expression of cell adhesion molecules. J Ethnopharmacol 104:270CrossRefGoogle Scholar
  246. 246.
    Hilmi F, Gertsch J, Bremner P, Valovic S, Heinrich M, Sticher O, Heilmann J (2003) Cytotoxic versus anti-inflammatory effects in HeLa, Jurkat T and human peripheral blood cells caused by guaianolide-type sesquiterpene lactones. Bioorg Med Chem 11:3659CrossRefGoogle Scholar
  247. 247.
    Narisawa T, Fukaura Y, Kotanagi H, Asakawa Y (1992) Inhibitory effect of cryptoporic acid E, a product from fungus Cryptoporus volvatus, on colon carcinogenesis induced with N-methyl-N-nitrosourea in rats and with 1,2-dimethylhydrazine in mice. Jpn J Cancer Res 83:830CrossRefGoogle Scholar
  248. 248.
    Hashimoto T, Asakawa Y (1998) Biologically active substances of Japanese inedible mushrooms. Heterocycles 47:1067CrossRefGoogle Scholar
  249. 249.
    Matsuda H, Yoshida K, Miyagawa K, Nemoto Y, Asao Y, Yoshikawa M (2006) Nuphar alkaloids with immediately apoptosis-inducing activity from Nuphar pumilum and their structural requirements for the activity. Bioorg Med Chem Lett 16:1567CrossRefGoogle Scholar
  250. 250.
    Matsuda H, Morikawa T, Oda M, Asao Y, Yoshikawa M (2003) Potent anti-metastatic activity of dimeric sesquiterpene thioalkaloids from the rhizome of Nuphar pumilum. Bioorg Med Chem Lett 13:4445CrossRefGoogle Scholar
  251. 251.
    Wang Q, Kuang H, Su Y, Sun Y, Feng J, Guo R, Chan K (2013) Naturally derived anti-inflammatory compounds from Chinese medicinal plants. J Ethnopharmacol 146:9CrossRefGoogle Scholar
  252. 252.
    Hu Z, Qin J, Zhang H, Wang D, Hua Y, Ding J, Shan L, Jin H, Zhang J, Zhang W (2012) Japonicone A antagonizes the activity of TNF-α by directly targeting this cytokine and selectively disrupting its interaction with TNF receptor-1. Biochem Pharmacol 84:1482CrossRefGoogle Scholar
  253. 253.
    Yamahara J, Shimoda H, Matsuda H, Yoshikawa M (1996) Potent immunosuppressive principles, dimeric sesquiterpene thioalkaloids, isolated from Nupharis Rhizoma, the rhizome of Nuphar pumilum (Nymphaeaceae): structure-requirement of Nuphar-alkaloid for immunosuppressive activity. Biol Pharm Bull 19:1241CrossRefGoogle Scholar
  254. 254.
    Matsuda H, Shimoda H, Yoshikawa M (2001) Dimeric sesquiterpene thioalkaloids with potent immunosuppressive activity from the rhizome of Nuphar pumilum. Structural requirements of Nuphar alkaloids for immunosuppressive activity. Bioorg Med Chem 9:1031CrossRefGoogle Scholar
  255. 255.
    Shieh C-C, Coghlan M, Sullivan JP, Gopalakrishnan M (2000) Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 52:557Google Scholar
  256. 256.
    Wulff H, Castle NA, Pardo LA (2009) Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8:982CrossRefGoogle Scholar
  257. 257.
    Pu H-L, Wang Z-L, Huang Q-J, Xu S-B, Lin Y-C, Wu X-Y (2000) Effects of biatractylolide on isolated guinea pig myocardium. Zhongguo Yaolixue Tongbao (Chin Pharm Bull) 16:60Google Scholar
  258. 258.
    Lee YM, Moon JS, Yun B-S, Park KD, Choi GJ, Kim J-C, Lee SH, Kim SU (2009) Antifungal activity of CHE-23C, a dimeric sesquiterpene from Chloranthus henryi. J Agric Food Chem 57:5750CrossRefGoogle Scholar
  259. 259.
    Yang Y, Cao Y-L, Liu H-Y, Yan H, Guo Y (2012) Shizukaol F: a new structural type inhibitor of HIV-1 reverse transcriptase RNase H. Yaoxue Xuebao 47:1011Google Scholar
  260. 260.
    Gille G, Pabst T, Janetzky B, Bringmann G, Reichmann H, Rausch WD (2000) Neurotrophic effects of simplified mastigophorene analogs on mesencephalic dopaminergic cells in primary culture. Drug Dev Res 50:153CrossRefGoogle Scholar
  261. 261.
    Xing F, Wang Z-L, Lin Y-C, Zhou Y, Liu Y-Z, Yang H-Z (2009) Effects of biatractylolide on the AD rats induced by Aβ1–40. Zhongguo Yaolixue Tongbao (Chin Pharm Bull) 25:949Google Scholar
  262. 262.
    Liu Y, Liao C-M (2006) Effects of biatractylolide on the AD rats induced by AlCl3. J Hunan Norm Univ 3:25Google Scholar
  263. 263.
    Oikawa H, Tokiwano T (2004) Enzymatic catalysis of the Diels-Alder reaction in the biosynthesis of natural products. Nat Prod Rep 21:321CrossRefGoogle Scholar
  264. 264.
    Vrettou M, Gray AA, Brewer ARE, Barrett AGM (2007) Strategies for the synthesis of C 2 symmetric natural products—a review. Tetrahedron 63:1487CrossRefGoogle Scholar
  265. 265.
    Kawabata J, Fukushi E, Mizutani J (1993) Symmetric sesquiterpene dimer from Chloranthus serratus. Phytochemistry 32:1347CrossRefGoogle Scholar
  266. 266.
    Shiina J, Oikawa M, Nakamura K, Obata R, Nishiyama S (2007) Synthesis of pinguisane-type sesquiterpenoids acutifolone A, pinguisenol, and bisacutifolones by a Diels-Alder dimerization reaction. Eur J Org Chem 2007:5190CrossRefGoogle Scholar
  267. 267.
    Lu Y-S, Peng X-S (2011) A concise construction of the chlorahololide heptacyclic core. Org Lett 13:2940CrossRefGoogle Scholar
  268. 268.
    Li C, Yu X, Lei X (2010) A biomimetic total synthesis of (+)-ainsliadimer A. Org Lett 12:4284CrossRefGoogle Scholar
  269. 269.
    Berube A, Drutu I, Wood JL (2006) Progress toward the total synthesis of bacchopetiolone: application of a tandem aromatic oxidation/Diels-Alder reaction. Org Lett 8:5421CrossRefGoogle Scholar
  270. 270.
    Gagnepain J, Castet F, Quideau S (2007) Total synthesis of (+)-aquaticol by biomimetic phenol dearomatization: double diastereofacial differentiation in the Diels–Alder dimerization of orthoquinols with a C 2-symmetric transition state. Angew Chem Int Ed Engl 46:1533CrossRefGoogle Scholar
  271. 271.
    Bringmann G, Pabst T, Rycroft DS, Connolly JD (1999) First synthesis of mastigophorenes A and B, by biomimetic oxidative coupling of herbertenediol. Tetrahedron Lett 40:483CrossRefGoogle Scholar
  272. 272.
    Degnan AP, Meyers AI (1999) Total syntheses of (−)-herbertenediol, (−)-mastigophorene A, and (−)-mastigophorene B. Combined utility of chiral bicyclic lactams and chiral aryl oxazolines. J Am Chem Soc 121:2762CrossRefGoogle Scholar
  273. 273.
    Bringmann G, Pabst T, Henschel P, Kraus J, Peters K, Peters E-M, Rycroft DS, Connolly JD (2000) Nondynamic and dynamic kinetic resolution of lactones with stereogenic centers and axes: stereoselective total synthesis of herbertenediol and mastigophorenes A and B. J Am Chem Soc 122:9127CrossRefGoogle Scholar
  274. 274.
    Bringmann G, Hinrichs J, Pabst T, Henschel P, Peters K, Peters E-M (2001) From dynamic to non-dynamic kinetic resolution of lactone-bridged biaryls: Synthesis of mastigophorene B. Synthesis 2001:155CrossRefGoogle Scholar
  275. 275.
    Srikrishna A, Rao MS (2001) Formal total synthesis of (±)-herbertenediol and (±)-mastigophorenes A and B. Tetrahedron Lett 42:5781CrossRefGoogle Scholar
  276. 276.
    Bringmann G, Pabst T, Henschel P, Michel M (2001) First total synthesis of the mastigophorenes C and D and of simplified unnatural analogs. Tetrahedron 57:1269CrossRefGoogle Scholar
  277. 277.
    Yue G, Yang L, Yuan C, Du B, Liu B (2012) Total syntheses of lindenane-type sesquiterpenoids: (±)-chloranthalactones A, B, F, (±)-9-hydroxy heterogorgiolide, and (±)-shizukanolide E. Tetrahedron 68:9624CrossRefGoogle Scholar
  278. 278.
    Bagal SK, Adlington RM, Baldwin JE, Marquez R, Cowley A (2003) Biomimetic synthesis of biatractylolide and biepiasterolide. Org Lett 5:3049CrossRefGoogle Scholar
  279. 279.
    Bagal SK, Adlington RM, Baldwin JE, Marquez R (2004) Dimerization of butenolide structures. A biomimetic approach to the dimeric sesquiterpene lactones (±)-biatractylolide and (±)-biepiasterolide. J Org Chem 69:9100CrossRefGoogle Scholar
  280. 280.
    Bagal SK, Adlington RM, Marquez R, Cowley AR, Baldwin JE (2003) Studies towards the biomimetic synthesis of bisesquiterpene lactones. Tetrahedron Lett 44:4993CrossRefGoogle Scholar
  281. 281.
    Goswami A, Saikia PP, Saikia B, Barua NC (2011) Dinitroaliphatics as linkers: application in the synthesis of novel artemisinin carba-dimer. Mol Divers 15:707CrossRefGoogle Scholar
  282. 282.
    Harinantenaina L, Noma Y, Asakawa Y (2005) Penicillium sclerotiorum catalyzes the conversion of herbertenediol into its dimers: mastigophorenes A and B. Chem Pharm Bull 53:256CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of PharmacyGuizhou Medical UniversityShanghaiPeople’s Republic of China
  2. 2.Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of PharmacyGuizhou Medical UniversityGuizhouPeople’s Republic of China
  3. 3.State Key Laboratory of Drug Research, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations